Structural and Thermomechanical Evaluation of Bionanocomposites Obtained from Biodegradable Polymers with a Organoclay

2014 ◽  
Vol 775-776 ◽  
pp. 178-182 ◽  
Author(s):  
Milena Costa da Silva ◽  
Sara Verusca de Oliveira ◽  
Edcleide Maria Araújo

In this study bionanocomposites were prepared from biodegradable polymer matrices such as poly (lactic acid) (PLA) and PBAT/PLA blend commercially known as Ecovio®, with abundant smectite clays in Paraíba and modified (OMMT) with Praepagen quaternary ammonium salt. Systems with PLA and with the blends of PBAT/PLA were prepared with addition of bentonite clay at a concentration of 3wt.%. in a twin screw corrotational extruder. The systems containing PLA/OMMT and blend of PBAT/PLA/OMMT were characterized by X-ray diffraction (XRD) and Heat Deflection Temperature (HDT). From the diffractograms of bionanocomposites PLA/OMMT and PBAT/PLA/ OMMT it was observed a probably microcomposite structure. It was also observed that the HDT of PBA/PLA/OMMT and the blend of PBAT/PLA bionanocomposites was lower in relation to pure PLA and its PLA/OMMT bionanocomposite.

2014 ◽  
Vol 775-776 ◽  
pp. 233-237 ◽  
Author(s):  
Dayanne Diniz Souza Morais ◽  
Renata Barbosa ◽  
Keila Machado Medeiros ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Recent advances in biodegradable polymers have attracted a great interest not only in traditional areas such as biomedical and pharmaceutical industry, but also in packaging applications, articles and injected membranes. The aim of this work was to produce bio-nanocomposites poly (lactic acid) - PLA with bentonite clay. The bio-nanocomposites were produced by melt intercalation with incorporation of 1 to 3 wt% of organoclay. The degree of dispersion of clays in the polymer, and consequently the structure of bio-nanocomposites produced was evaluated by X-ray diffraction (XRD), and the thermal properties were studied by differential scanning calorimetry (DSC). XRD results indicated the formation of intercalated structures. It was observed the appearance of crystalline melting double peaks in bio-nanocomposites PLA.


2020 ◽  
Vol 856 ◽  
pp. 303-308
Author(s):  
Suttinun Phongtamrug ◽  
Sirisart Ouajai

Poly(lactic acid) (PLA) is a potential biodegradable polymer to replace petroleum-based plastic, however, its main drawback is brittleness because of slow crystallization rate. To overcome this limitation, compounding with some additives is the most chosen choice due to easy and effective preparation. In this study, an epoxidized soybean oil (ESO) and a microcrystalline cellulose (MCC) were applied as a plasticizer and a nucleating agent, respectively. The PLA was compounded with ESO and MCC by using a twin-screw extruder. The product sheets were prepared by using a chill-roll cast film extruder. Change of thermal property after adding ESO and MCC was investigated by a differential scanning calorimeter. Mechanical property of the prepared sheet was carried out by using a universal testing machine in a tensile mode. Microstructure of the sheets was also studied by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) techniques. The results showed that ESO assisted plasticization while the MCC induced crystallization of PLA. Also, ESO and MCC eased flowability and alignment of PLA microstructure in machine direction.


2007 ◽  
Vol 29-30 ◽  
pp. 337-340 ◽  
Author(s):  
M.A. Sawpan ◽  
K.L. Pickering ◽  
Alan Fernyhough

The potential of hemp fibre as a reinforcing material for Poly(lactic acid) (PLA) was investigated. Good interaction between hemp fibre and PLA resulted in increases of 100% for Young’s modulus and 30% for tensile strength of composites containing 30 wt% fibre. Different predictive ‘rule of mixtures’ models (e.g. Parallel, Series and Hirsch) were assessed regarding the dependence of tensile properties on fibre loading. Limited agreement with models was observed. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) studies showed that hemp fibre increased the degree of crystallinity in PLA composites.


2011 ◽  
Vol 332-334 ◽  
pp. 317-320 ◽  
Author(s):  
Hui Qin Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and Poly(lactic acid) (PLA) were prepared via an electrospinning process. The surface morphology, thermal properties and crystal structure of PLA/PANI-DBSA nanofibers are characterized using Fourier transform infrared spectroscopy (FT-IR), wide-angle x-ray diffraction (WAXD) and scanning electron microscopy (SEM). SEM images showed that the morphology and diameter of the nanofibers were affected by the weight ratio of blend solution.


2012 ◽  
Vol 549 ◽  
pp. 322-326 ◽  
Author(s):  
Yong Chen ◽  
Qiang Dou

The effect of a nucleating agent (NT-C) on the crystallization behavior of poly(lactic acid) (PLA) was studied. The melting and crystallization behavior and spherulitic morphology of the nucleated PLA were investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increase, the spherulitic size decrease for the nucleated PLA. But the crystal structure of the nucleated PLA is not changed.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2743
Author(s):  
Tamara M. Díez-Rodríguez ◽  
Enrique Blázquez-Blázquez ◽  
Ernesto Pérez ◽  
María L. Cerrada

Several composites based on an L-rich poly(lactic acid) (PLA) with different contents of mesoporous Santa Barbara Amorphous (SBA-15) silica were prepared in order to evaluate the effect of the mesoporous silica on the resultant PLA materials by examining morphological aspects, changes in PLA phases and their transitions, and, primarily, the influence on some final properties. Melt extrusion was chosen for the obtainment of the composites, followed by quenching from the melt to prepare films. Completely amorphous samples were then attained, as deduced from X-ray diffraction and differential scanning calorimetry (DSC) analyses. Thermogravimetric analysis (TGA) results demonstrated that the presence of SBA-15 particles in the PLA matrix did not exert any significant influence on the thermal decomposition of these composites. An important nucleation effect of the silica was found in PLA, especially under isothermal crystallization either from the melt or from its glassy state. As expected, isothermal crystallization from the glass was considerably faster than from the molten state, and these high differences were also responsible for a more considerable nucleating role of SBA-15 when crystallizing from the melt. It is remarkable that the PLA under analysis showed very close temperatures for cold crystallization and its subsequent melting. Moreover, the type of developed polymorphs did not accomplish the common rules previously described in the literature. Thus, all the isothermal experiments led to exclusive formation of the α modification, and the observation of the α’ crystals required the annealing for long times at temperatures below 80 °C, as ascertained by both DSC and X-ray diffraction experiments. Finally, microhardness (MH) measurements indicated a competition between the PLA physical aging and the silica reinforcement effect in the as-processed amorphous films. Physical aging in the neat PLA was much more important than in the PLA matrix that constituted the composites. Accordingly, the MH trend with SBA-15 content was strongly dependent on aging times.


KOVALEN ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 90-98
Author(s):  
Tika Paramitha ◽  
Johnner P. Sitompul

Development of renewable resource-based polymers attracts attention to solve environmental problems due to the build up of polymer (plastic). Poly(lactic acid) (PLA) is one of the most widely used polymers which have good biodegradability and processability. The addition of fillers to the PLA matrix aims to improve the characteristics of the PLA, such as mechanical properties of nanocomposites of PLA. Thus, PLA can be use as substitution of fossil fuel-based polymer. Spent Bleaching Earth (SBE) can be used as a filler after regeneration process. SBE was extracted and oxidized to take its oil content. Then, SBE was modified with urea solution to increase the interlayer distance. In this study, structure of nanocomposites was characterized using X-Ray Diffraction and mechanical properties of nanocomposites were characterized using Universal Testing Machines. X-Ray Diffraction characterization results show that PLA-SBE nanocomposite and PLA-modified regenerated SBE nanocomposites do not form new peaks, so SBE and modified regenerated SBE is intercalated and partially exfoliated in the PLA matrix. The degree of intercalation/exfoliation is indicated by the results of characterization of mechanical properties. The mechanical properties of PLA-SBE nanocomposite are lower than neat PLA, whereas the mechanical properties of PLA-modified regenerated SBE nanocomposites are higher than neat PLA. The best mechanical properties of nanocomposites were obtained for PLA-5% modified regenerated SBE, with elongation and tensile strength, 3.26%, and 42.22 MPa, respectively. Keywords: nanocomposites, poly(lactic acid), regeneration, spent bleaching earth


Sign in / Sign up

Export Citation Format

Share Document