Rheological, Structural and Mechanical Characterization of Monolithic Zircon-Alumina Bodies

2014 ◽  
Vol 793 ◽  
pp. 151-158 ◽  
Author(s):  
M. León-Carriedo ◽  
C.A. Gutiérrez Chavarría ◽  
J.L. Rodríguez Galicia ◽  
Jorge López-Cuevas ◽  
M.I. Pech Canul

In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.

2013 ◽  
Vol 544 ◽  
pp. 3-7 ◽  
Author(s):  
Jin Sheng Li ◽  
Xu Dong Sun ◽  
Shao Hong Liu ◽  
Di Huo ◽  
Xiao Dong Li ◽  
...  

Fine yttrium stearate powder was produced at a relatively low temperature using yttrium nitrate hexahydrate, ammonia and stearic acid as the raw materials. Dispersed Y2O3 nanopowder was synthesized by calcining the yttrium stearate. The formation mechanism of the precursor and the Y2O3 nanopowder was studied by means of XRD, TG-DTA, FT-IR, BET, FE-SEM and HR-TEM. Pure and dispersed Y2O3 nanopowder with an average particle size of 30 nm was produced by calcining the precursor at 600 °C. The particle size increases to about 60 nm with the increase of the calcination temperature to 1000 °C. In the preparation of Y2O3 from yttrium stearate, no water medium is involved, thus capillarity force and bridging of adjacent particles by hydrogen bonds can be avoided, resulting in good dispersion of the particles. The dispersed Y2O3 nanopowder prepared in this work has potential application in phosphors and transparent ceramic materials.


2012 ◽  
Vol 15 (2) ◽  
pp. 27-34
Author(s):  
Nguyet Thi Thuy Dao ◽  
Duong Phuc Nguyen ◽  
Hien Duc Than

This paper presents the synthesis and characterization of Y3Fe5O12, Gd3Fe5O12 and Dy3Fe5O12 nanoparticles by sol-gel method using initial salts solution of Y(NO3)3, Gd(NO3)3, Dy(NO3)3, Fe(NO3). The lattice constant, crystallite size and particle morphology of these ferrite garnet nanoparticles were studied by using X-ray diffraction and transmission electron microscopy (TEM). The results showed that the garnet samples prepared by this method were formed at 800oC, which is lower than the sintering temperature for ceramic bulk samples (1400oC). The particle size is in the range 25- 40 nm as observed via TEM image and the average particle size was found to be 37nm using Debye- Scherrer formula.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


2008 ◽  
Vol 368-372 ◽  
pp. 115-117 ◽  
Author(s):  
Ke Pi Chen ◽  
Yong He ◽  
Dong Yu Liu ◽  
Zong De Liu

CCTO powders were prepared by using molten salt method in the NaCl-KCl system. The effects of temperature and holding time on phase compositions, particle morphology and size have been investigated by X-ray diffraction, scanning electron microscope and laser particle size analyzer. Using CaCO3, CuO and TiO2 as starting materials, CCTO compound could be synthesized at any temperature from 800oC to 1000oC in the NaCl-KCl system. The average particle size increased obviously with the increasing of temperature above 850 oC. Holding time had great effect on grain size and morphology.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2016 ◽  
Vol 18 (2) ◽  
pp. 131-139
Author(s):  
Kinga Łuczka ◽  
Barbara Grzmil ◽  
Bogumił Kic ◽  
Krzysztof Kowalczyk

Abstract Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios) in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.


Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


2020 ◽  
Vol 18 ◽  
Author(s):  
Yanfang Zhang ◽  
Rina Du ◽  
Pengwei Zhao ◽  
Sha Lu ◽  
Rina Wu ◽  
...  

Background: Quercetin is the main active ingredient of Xanthoceras sorbifolia Bunge. Traditional compatibility theory of traditional Chinese medicine has typically reported a synergistic interaction among multiple components, while the synergistic effects of nanoemulsion have not been fully clarified. Objective: To study preparation and characterization of quercetin-based Mongolia Medicine Sendeng-4 nanoemulsion (NQUE-NE) and its antibacterial activity and mechanisms. Methods: The morphology of the nanoemulsion was observed by transmission electron microscopy (TEM), and the zeta potential, polydispersity index (PDI), and particle size distribution were determined by the nanometer particle size analyze. The stability of nanoemulsion was investigated by light test, high speed centrifugal test and storage experiment at different temperature. The combined bacteriostatic effect of N-QUE-NE was studied in vitro by double-dilution method and checkerboard dilution method. Results: The appearance of N-QUE-NE was pale yellow, clear and transparent. The nanoemulsion particles were spherical and uniformly distributed under TEM. The PDI was 0.052, the average particle size was 19.6nm, and the Zeta potential was -0.2mV. When quercetin nanoemulsion (QUE-NE) was used in combination with tannin nanoemulsion (TAN-NE) and toosendanin nanoemulsion (TOO-NE), it exhibited a synergistic antibacterial effect. However, the combination of QUE-NE and geniposide nanoemulsion (GEN-NE) exhibited an antagonistic effect. It was revealed that the antibacterial effect was in order of quercetin-tannin-toosendanin nanoemulsion (QUE-TAN-TOO-NE) > quercetin-tannin nanoemulsion (QUE-TANNE) > QUE-NE > quercetin-tannin-toosendanin-geniposide nanoemulsion (QUE-TAN-TOO-GEN-NE). Conclusion: This study explored the preparation and efficacy of N-QUE-NE, and the results showed that quercetin, tannin and toosendanin had satisfactory synergistic antibacterial effects. The antagonistic effect of quercetin and geniposide in nanoemulsion indicated that it is not beneficial to the antibacterial effect of Sendeng-4, and further research needs to be conducted to clarify its antibacterial effect.


Sign in / Sign up

Export Citation Format

Share Document