The Effect of Hot Deformation on Dispersoid Evolution in a Model 3xxx Alloy

2014 ◽  
Vol 794-796 ◽  
pp. 697-703 ◽  
Author(s):  
Joseph D. Robson ◽  
Thomas Hill ◽  
Nicolas Kamp

The influence of hot deformation on the evolution of size, shape, and fraction of dispersoids has been studied in a simple 3xxx aluminium alloy by means of hot torsion testing. It has been shown that at high strain rates, deformation leads to spheroidization of the dispersoids, an increase in number density, and an increase in volume fraction. The increase in number density and volume fraction are associated with precipitation of new particles. The enhancement of manganese diffusion is a key factor in promoting rapid dispersoid evolution during deformation. A model has been developed to estimate the effect of deformation induced vacancies and dislocations on diffusion. This predicts that an order of magnitude increase in diffusion coefficient between may occur under typical hot deformation conditions, consistent with the rapid microstructural changes measured experimentally.

2018 ◽  
Vol 37 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Xuemei Yang ◽  
Hongzhen Guo ◽  
Zekun Yao ◽  
Shichong Yuan

AbstractThe high-temperature plastic deformation and dynamic recrystallization behavior of BT25y alloy were investigated within the deformation temperatures of 1,213–1,293 K and strain rates of 0.001–1.0 s–1 on a Gleeble-1500 thermo-mechanical simulator. Results showed that the dynamic recrystallization (DRX) mechanism played an important role in the hot deformation of BT25y alloy. Based on the regression analysis of the true stress–strain data, the stress exponent and deformation activation energy of BT25y alloy were calculated to be 3.4912 and 288.0435 kJ/mol, respectively. The θ-σ and dθ/dσ–σ curves were plotted to further obtain the critical stress and critical strain for the occurrence of DRX. Based on the analysis results, the DRX kinetic model was established. The model was validated by the comparison between predicted and experimental volume fraction of DRX. As the DRX evolution was sensitive to deformation temperature and strain rate, quantities of dynamically recrystallized grains appeared at higher temperatures and lower strain rates.


2014 ◽  
Vol 626 ◽  
pp. 553-560
Author(s):  
Shi Rong Chen ◽  
Chung Yung Wu ◽  
Yi Liang Ou ◽  
Yen Liang Yeh

Axisymmetric compression tests using Gleeble 3800 simulator were carried out to investigate hot deformation behaviors of an AA5083 alloy under high strain rate conditions. Sharp temperature rise and load cell ringing characterized by severely vibrational load responses were encountered at strain rates higher than 20 s-1 and sample buckling occurred at low temperatures. The load cell ringing was corrected using a moving average method with a two-way filtering operation to correct phase distortion. Isothermal flow curves were obtained by fitting the instantaneous temperatures into a binomial function, while buckling was correlated with sample height and Young’s modulus. After the corrections, hyperbolic sine equation was successfully used to extend from the hot tensile data having strain rates lower than 3 s-1 to 100 s-1. Quantitative analyses were accordingly made over the effects of temperature, strain rate and work hardening behavior on the flow curves. The previous constitutive equation in form of temperature, strain and strain rate was modified to predict the hot deformation resistance of the AA5083 alloy at temperatures of 250-450oC under the high strain rate operations.


2017 ◽  
Vol 898 ◽  
pp. 137-143
Author(s):  
Lin Xiang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jie Shao ◽  
Jin Shan Li

Isothermal compression tests were conducted to investigate the effect of hot deformation parameters on flow behavior and microstructure of Ti-6Al-4V-0.2O alloy. The experimental results show that the strain rate and height reduction have little effect on the volume fraction of primary α at a deformation temperature of 860 ̊C. At a deformation temperature of 940 ̊C, the volume fraction of primary α at a high strain rate (10s-1) is about 10% less than that at low strain rates (0.01s-1~1s-1). It may be one of the reasons for the significantly discontinuous yielding phenomenon. Another reason is that the dislocation density decreased suddenly due to the dynamic recovery. With the increasing strain rate and the decreasing deformation temperature, the volume fraction of irregular secondary α increases and lamellar secondary α decreases. And with height reduction increasing, the irregular secondary α increases firstly and then tends to be steady because of dynamic recovery and recrystallization.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 846 ◽  
Author(s):  
Changmin Li ◽  
Yuan Liu ◽  
Yuanbiao Tan ◽  
Fei Zhao

The H13-mod steel optimized by composition and heat treatment has reached the performance index of the shield machine hob. The hot deformation behavior of the H13-mod steel was investigated by compression tests in the temperature range from 900 to 1150 °C and the strain rate range from 0.01 to 10 s−1. The true stress-strain curve showed that the rising stress at the beginning of deformation was mainly caused by work hardening. After the peak stress was attained, the curve drop and the flow softening phenomenon became more obvious at low strain rates. The flow behavior of the H13-mod steel was predicted by a strain-compensated Arrhenius-type constitutive equation. The relationship between the material constant in the Arrhenius-type constitutive equation and the true strain was established by a sixth-order polynomial. The correlation coefficient between the experimental value and the predicted value reached 0.987, which indicated that the constitutive equation can accurately estimate the flow stress during the deformation process. A good linear correlation was achieved between the peak stress (strain), critical stress (strain) and the Zener‒Hollomon parameters. The processing maps of the H13-mod steel under different strains were established. The instability region was mainly concentrated in the high-strain-rate region; however, the microstructure did not show any evidence of instability at high temperatures and high strain rates. Combined with the microstructure and electron backscattered diffraction (EBSD) test results under different deformations, the optimum hot working parameters were concluded to be 998–1026 °C and 0.01–0.02 s−1 and 1140–1150 °C and 0.01–0.057 s−1.


2019 ◽  
Vol 38 (2019) ◽  
pp. 84-91 ◽  
Author(s):  
E. Shafiei ◽  
A. Soltani Tehrani

AbstractIn this study, the logarithmic-power model has been used to predict hot deformation behavior of alloy 800H at high temperatures. This is for the first time that the logarithmic-power model is examined to model the flow stress curves with negligible flow softening at high strain rates. To this end, flow stress curves of alloy 800H obtained at deformation temperatures from 850°C to 1050°C and at strain rates of 5 and 10 S−1 were employed. The Johnson–Cook model and Shafiei constitutive equation were also used to prove the accuracy of the logarithmic-power model in prediction of flow stress curves of alloy 800H. Evaluation of mean error of flow stress at different deformation conditions showed that the logarithmic-power model can give a more precise estimation of flow stress curves than Johnson–Cook model. Furthermore, it was found out that the accuracy of the Logarithmic-power model and Shafiei constitutive equation was roughly the same in terms of maximum errors obtained in prediction of flow stress curves. Accordingly, it can be concluded that the logarithmic-power model can be employed as a comprehensive model for a wide range of deformation conditions.


1992 ◽  
Vol 7 (3) ◽  
pp. 605-612 ◽  
Author(s):  
R.D. Noebe ◽  
C.L. Cullers ◽  
R.R. Bowman

Tensile testing of cast and extruded binary NiAl was performed from 300 to 900 K at strain rates of 1.4 × 10−4 to 1.4 × 10−1 × s−1. The brittle-to-ductile transition temperature (BDTT) was dependent on strain rate, with a three order of magnitude increase in strain rate resulting in approximately a 200 K increase in transition temperature. Regardless of strain rate, at temperatures just above the BDTT the fracture strength increased significantly and the fracture morphology changed from mostly intergranular to predominantly transgranular. It was also determined that the mechanism responsible for the brittle-to-ductile transition in NiAl had an apparent activation energy of approximately 118 kJ/mol. These results support the argument that the mechanism for the brittle-to-ductile transition in NiAl is associated with the onset of a thermally activated deformation process. This process is probably dislocation climb controlled by short circuit diffusion.


Sign in / Sign up

Export Citation Format

Share Document