Synthesis and Characterization of Cu–TiC Nanocomposites by Ball Milling and Spark Plasma Sintering

2014 ◽  
Vol 804 ◽  
pp. 173-176
Author(s):  
Nguyen Thi Hoang Oanh ◽  
Nguyen Hoang Viet ◽  
Jin Chun Kim ◽  
Ji Soon Kim

In this study, Cu-TiC nanocomposites were fabricated from a mixture of Cu and 5÷15% wt. TiC powders by ball milling and subsequent spark-plasma sintering. The morphology of Cu-TiC nanocomposite powders were observed by field emission scanning electron microscopy. Only characteristic peaks of Cu and TiC phases were detected from X-ray diffraction patterns of milled powder mixture. Sintered compacts showed a highly densified compacts (∼95% relative density) while retaining fine grains in the matrix. The hardness, wear resistance, and fracture surface of the sintered specimens were also investigated.

2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


2007 ◽  
Vol 534-536 ◽  
pp. 1489-1492 ◽  
Author(s):  
Dae Hwan Kwon ◽  
Jong Won Kum ◽  
Thuy Dang Nguyen ◽  
Dina V. Dudina ◽  
Pyuck Pa Choi ◽  
...  

Dispersion-strengthened copper with TiB2 was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at 650°C for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly


2020 ◽  
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

Abstract A new nano-laminated Y3Si2C2 ceramic material, for the first time, was successfully synthesized via in situ reaction between YH2 and SiC by spark plasma sintering. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping was observed at the tip of the Vickers indent. The values of elastic modulus and Vickers hardness of the Y3Si2C2 ceramics sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W m-1 k-1 and 6.3 × 105 S m-1, respectively.


2018 ◽  
Vol 941 ◽  
pp. 1053-1058 ◽  
Author(s):  
Larissa Gouvea ◽  
Igor Moravcik ◽  
Jan Cizek ◽  
Petra Krajnakova ◽  
Vít Jan ◽  
...  

In the present work, the High-Entropy Alloys Al0.2Co1.5CrFeNi1.5Ti, Al1.3Co1.4Cr2.0FeNi4.0Ti4.0 and Al6.0Co1.2Cr2.5FeNi3.5Ti6.0 were produced by Mechanical Alloying and subsequent Spark Plasma Sintering processes to obtain properly densified bulks. The characterization of the materials was accomplished through X-Ray Diffraction, Scanning Electron Microscopy, microhardness and nanoindentation tests to identify and analyze the acquired microstructures’ features, phases formed, morphology and size of the grains and its average hardness. The results indicate that it was possible to obtain alloys presenting high values of hardness and multi-phase microstructures. The effect of the multiple phases on the microstructures was discussed in terms of its influence on the mechanical properties. A satisfying densification level of the materials was achieved with the selected parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Nouari Saheb

Ball milling and spark plasma sintering were successfully used to produce carbon nanotube reinforced Al6061 and Al2124 nanocomposites which have potential applications in the fields of aerospace, automotive, electronics, and high precision instrumentation. Al2124 and Al6061 nanocomposite powders containing 0.5 to 2 wt.% CNTs prepared through sonication and wet ball milling were spark plasma sintered at 400, 450, and 500°C for 20 minutes under a pressure of 35 MPa. CNTs were better dispersed, and less agglomerated and had good adhesion to the matrix in composites containing 1 wt.% CNTs. The increase of CNT content to 2 wt.% led to the formation of CNT clusters which resulted in less uniform and homogenous composite powders. Almost full densification of Al6061 reinforced with CNTs was achieved at 500°C. Also, CNTs reinforced Al2124 nanocomposites reached very high densities at 500°C. Composites reinforced with 1 wt.% CNTs displayed better densification compared to composites containing 2 wt.% CNTs. The increase of CNTs content from 0.5 to 1 wt.% increased the hardness of the Al6061 and Al2124 alloys to maximum values. Further increase of CNTs content to 2 wt.% decreased the hardness to values lower than that of the monolithic alloys.


2011 ◽  
Vol 410 ◽  
pp. 224-227 ◽  
Author(s):  
Sivaiah Bathula ◽  
R.C. Anandani ◽  
Ajay Dhar ◽  
A.K. Srivastava

This study reports the synthesis and characterization of Al-alloy/SiCpmetal matrix nanocomposite, synthesized using high energy ball milling followed by sintering employing spark plasma sintering (SPS). In the present investigation, Al 5083 alloy powder (15 μm) and 10wt.% SiC particulates (~20 nm) were milled in a high-energy planetary ball mill to produce nanocrystalline Al-alloy/SiC nanocomposite powders. X-ray diffraction analysis (XRD) was carried out for milled and un-milled powder and it was observed that, as the time of milling increased, the crystallite size of Al-alloy matrix decreased sharply. The average crystallite size of Al-matrix from XRD analysis was observed to be ~ 25 nm after 15 h of ball milling. Ball milled nanocomposite powders were consolidated and sintered employing SPS at a temperature range of 500°C with a heating rate of 300°C/min and the total sintering cycle was completed in 8 min. The mechanical properties were found to substantially increase after sintering employing SPS. Morphology of as received (un-milled) powders, milled powders and sintered nanocomposites were investigated by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The mechanical property evaluation of the sintered nanocomposite was done by measuring nanoindentation, micro-hardness and compressive strength.


2018 ◽  
Vol 27 (3) ◽  
pp. 1475-1483 ◽  
Author(s):  
Elżbieta Bączek ◽  
Janusz Konstanty ◽  
Andrzej Romański ◽  
Marcin Podsiadło ◽  
Jolanta Cyboroń

CORROSION ◽  
10.5006/3633 ◽  
2020 ◽  
Author(s):  
Mohammad Umar Farooq Khan ◽  
Taban Larimian ◽  
Tushar Borkar ◽  
Rajeev Gupta

ABSTRACT In this work, nine nanocrystalline binary Mg alloys synthesized by high energy ball milling. The compositions, Mg-5wt.%M (M- Cr, Ge, Mn, Mo, Ta, Ti, V, Y, Zn) were milled with an objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25 ï‚°C and spark plasma sintering (SPS) at 300 ï‚°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. X-ray diffraction analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all the alloys. The corrosion behavior was improved in all the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloy.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 143 ◽  
Author(s):  
Ivan A. Ditenberg ◽  
Ivan V. Smirnov ◽  
Michail A. Korchagin ◽  
Konstantin V. Grinyaev ◽  
Vladlen V. Melnikov ◽  
...  

In this paper, the structural characteristics of a W-Ta-Mo-Nb-V-Cr-Zr-Ti non-equiatomic refractory metal alloy obtained by spark plasma sintering (SPS) of a high-energy ball-milled powder mixture are reported. High-energy ball milling resulted in the formation of particle agglomerates ranging from several tens to several hundreds of micrometers. These agglomerates were composed of micrometer and submicrometer particles. It was found that, during ball milling, a solid solution of A2 structure formed. The grains of the sintered material ranged from fractions of a micrometer to several micrometers. During SPS, the phase transformations in the alloy led to the formation of a Laves phase of C15 structure and ZrO and ZrO2 nanoparticles. The microhardness of the ball-milled alloy and sintered material was found to be 9.28 GPa ± 1.31 GPa and 8.95 GPa ± 0.42 GPa, respectively. The influence of the processing conditions on the structure, phase composition, and microhardness of the alloy is discussed.


Author(s):  
Chia-Hung Kuo ◽  
Chii-Shyang Hwang ◽  
Jie-Ren Ku ◽  
Ming-Shan Jeng ◽  
Fang-Hei Tsau

PbTe is a conventional thermoelectric material for thermoelectric generator at intermediate temperature. Small grain size effect has been reported to improve PbTe ZT values (figure of merit). We report a combination process of attrition milling and spark plasma sintering (SPS) for preparing PbTe bulk materials with small grain sizes. The PbTe powders were milled by attrition under 600 rpm for 6–96 h and followed by SPS process under the sintering temperature of 573–773 K, the heating rate of 100 K/min, and the sintering pressure of 50 MPa. The powders and bulk materials as-prepared were then studied by X-ray diffraction patterns, scanning electron microscopy images, and transmission electron microscopy images. Transport properties of polycrystalline PbTe bulks were evaluated through temperature dependent thermal conductivity measurements.


Sign in / Sign up

Export Citation Format

Share Document