scholarly journals Hot Forming Process Analysis of Ti6Al-4V Alloy: Experiment, Behaviour Modelling and Finite Element Simulation

2016 ◽  
Vol 838-839 ◽  
pp. 183-189 ◽  
Author(s):  
Vincent Velay ◽  
Hiroaki Matsumoto ◽  
Vanessa Vidal ◽  
Luc Penazzi ◽  
Fabien Nazaret ◽  
...  

The present investigation aims at evaluating and understanding the thermo-mechanical be-haviour of a titanium alloy under hot forming conditions. In this work, several considerations are ad-dressed. First, Scanning Electron Microscopy observations are performed to assess the evolutions of(α − β) phases, grain size, defects regarding the thermo-mechanical loadings from different static anddynamic tests (various temperatures and strain rates). Hence, the relationships between mechanicalproperties and micro-structure evolutions in such conditions allow a first assessment of the deforma-tion mechanisms in link with the macroscopic stress-strain curves. Afterwards, a behaviour modelformulation associated to an identification procedure of the parameters of the constitutive equationsis proposed. Finally, several tests performed under hot forming conditions and conducted on an in-dustrial press are compared to Finite Element calculations. Results are compared and provide someinteresting improvement ways in order to investigate the influence of the process parameters on thefinal shape of the part.

2016 ◽  
Vol 7 (1) ◽  
pp. 7-12 ◽  
Author(s):  
D. Huri

Non-linear finite element calculations are indispensable when important information of the material response under load of a rubber component is desired. Although the material characterization of a rubber component is a demanding engineering task, the changing contact range between the parts and the incompressibility behaviour of the rubber further increase the complexity of the investigations. In this paper the effects of the choice of the numerical material parameters (e.g. bulk modulus) are examined with regard to numerical stability, mesh density and calculation accuracy. As an example, a rubber spring is chosen where contact problem is also handled.


2014 ◽  
Vol 488-489 ◽  
pp. 589-592
Author(s):  
Min Tan

Inverted siphon structure is a common water conveyance buildings, computer as a efficient computational tool is used, this paper adopt finite element method to carry out three-dimensional finite element simulation analysis for Dahedong inverted siphon structure. Deducing variation law of the inverted siphons stress and displacement in construction process and operating process. Analysis results further verified that design scheme is reasonable and safe, it has certain application value.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880733
Author(s):  
Yue Feng ◽  
Shoune Xiao ◽  
Bing Yang ◽  
Tao Zhu ◽  
Guangwu Yang ◽  
...  

Dynamic and quasi-static tensile tests of 5083P-O aluminium alloy were carried out using RPL100 electronic creep/fatigue testing machine and the split Hopkinson tension bar, respectively. The dynamic constitutive relation of the material at high strain rates was studied, and the constitutive model in accordance with Cowper–Symonds form was established. At the same time, a method to describe the constitutive relation of material using the strain rate interpolation method which is included in LS-DYNA software was proposed. The advantages and accuracy of this method were verified by comparing the results of the finite element simulation with the fitting results of the Cowper-Symonds model. The influence of material strain rate effect on squeezing force, energy absorption and deformation mode of the squeezing energy-absorbing structure based on the constitutive models of 5083P-O were studied by means of finite element simulation. The results show that when the strain rate of the structure deformation is low, the material strain rate strengthening effect has little influence on the structure. However, with the increase of the strain rate, the strengthening effect of the material will improve the squeezing force and the energy absorption of the structure, and will also influence the deformation mode, that is, the decrease of the deformation with high strain rates while the increase of the deformation with low strain rates.


2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2008 ◽  
Vol 367 ◽  
pp. 193-200
Author(s):  
Branko Grizelj ◽  
M. Plancak ◽  
Branimir Barisic

The paper analyses the process of simulation forward-backward extrusion. In metal forming industries, many products have to be formed in large numbers and with highly accurate dimensions. To save energy and material it is necessary to understand the behavior of material and to know the intermediate shapes of the formed parts and the mutual effects between tool and formed party during the forming process. These are normally based on numerical methods which take into account all physical conditions of the deformed material during the process. For this purpose, the finite element method has been developed in the past in different ways. The paper highlights the finite element simulation as a very useful technique in studying, where there is a generally close correlation in the load results obtained with finite elements method and those obtained experimentally.


Sign in / Sign up

Export Citation Format

Share Document