Neural Network Modeling of Coefficient of Burden Resistance to the Gas Movement in the Lower Part of the Blast Furnace in Conditions of Operation with Coke Nut

2016 ◽  
Vol 870 ◽  
pp. 487-491
Author(s):  
Salavat K. Sibagatullin ◽  
Aleksandr S. Kharchenko ◽  
Marina V. Potapova

A mathematical model based on the use of artificial neural networks for forecast of resistance coefficient of burden to the gas at the bottom of the blast furnace with using of coke nut by processing of data array for the OJSC "MMK" blast furnaces (capacity of 1370 m3), equipped with a chute-type bell-less charging device has been created. This test has shown the adequacy of the model to real data. Influence of such factors as characteristics of blast (oxygen content, temperature, natural gas and water steam consumption), iron ore (raw material consumption per time unit, FeO, MgO, Al2O3 content, fraction, basicity), coke (wearability (M10), impact strength (M25), coke strength reactivity (CSR), coke reactivity index (CRI)) on gas dynamics variation at the lower part of the black furnace have been determined. Average relative prediction error does not exceed 0.28 %, the maximum of the sample is 2.82 %. The oxygen content in the blast has the biggest effect on the burden resistance coefficient. When oxygen concentration is more than 25.2 %, the increase of natural gas consumption improves gas-dynamic conditions in the lower part of blast furnace. With the decrease of oxygen content in the blast, the influence of natural gas consumption on coefficient of burden resistance varies in the opposite direction. The reduction of coke wearability (M10) by 0.05 % abs. or the increase of coke strength reactivity (CSR) by 0.14 % abs. has compensated negative effect of coke nut (consumption 4 kg/t of iron) on blast furnace operation.

2019 ◽  
Vol 29 (1) ◽  
pp. 102-118
Author(s):  
Otto Mierka ◽  
Miroslav Variny ◽  
Ingrida Skalíková ◽  
Peter Sámel ◽  
Ján Kizek ◽  
...  

Abstract A study on natural gas saving and emissions decrease in the public health care sector is presented. The analyzed hospital complex belongs to the largest ones in Slovakia and uses both hot water and water steam for heating purposes. Visual steam system inspection revealed serious inefficiencies, including steam venting, missing pipelines insulation and obsolete steam sources with dysfunctional blow-down system. Defined experiment with stepwise steam appliances shutdown enabled quantification of excess natural gas consumption due to these inefficiencies. Measures proposed for the solution of this state are inexpensive, with a short payback period. The expected natural gas savings amount up to 3200 MWh/year, which represents roughly 50% of the total natural gas consumption in the hospital complex.


2019 ◽  
pp. 323-329
Author(s):  
Y. JIA

Since 2007, the use of natural gas in China depends on the import, and with an increase in natural gas consumption, gas imports are also constantly growing. In 2018, Chinas natural gas imports approached 100 billion cubic meters, which is 70 times more than in 2006. In recent years, increasing attention has been paid to the use of natural gas in China. Turkmenistan is Chinas main source of pipeline gas imports, and China is Turkmenistans largest exporter of natural gas. In the framework of the traditional model of oil and gas cooperation, China and Turkmenistan are facing such problems as the uniform content of cooperation, lack of close ties in the field of multilateral cooperation and slow progress in the development of the entire industrial chain. Cooperation between China and Central Asia in the field of oil and gas is increasingly affecting the nerves of other countries, except the five countries of Central Asia, but including Russia, Afghanistan, Pakistan, India, Iran and other countries of the Middle East, Japan, South Korea, etc. and even the European Union and the USA. Despite the favorable trading environment for both parties, there are also problems in the domestic market of Turkmenistan and the risks of international competition.


Energy ◽  
2021 ◽  
pp. 121036
Author(s):  
Nan Wei ◽  
Lihua Yin ◽  
Chao Li ◽  
Changjun Li ◽  
Christine Chan ◽  
...  

2022 ◽  
pp. 105760
Author(s):  
Erick Meira ◽  
Fernando Luiz Cyrino Oliveira ◽  
Lilian M. de Menezes

2013 ◽  
Vol 27 ◽  
pp. 1-7
Author(s):  
Mahbubur Rahman ◽  
Mohammad Tamin ◽  
Lutfar Rahman

The natural gas consuming sectors in Bangladesh are: i) Power, ii) Fertilizer, iii) Industry, iv) Captive power, v) Domestic, vi) Commercial, and vii) Transportation (CNG). Broad sectoral consumptions are reported in various literatures and reports, however, further breakdown of the data are difficult to find, and neither reported. The combined consumption of fertilizer, industry and captive power sectors is a significant portion of national gas consumption. This paper presents for the first time an in-depth analysis of the industrial sector gas consumption. Data were collected for each type of industry, and grouped according to the United Nations Framework Convention for Climate Change (UNFCCC). Captive generation is included in the industrial sector consumption, unlike the usual practice of considering it under the power generation. It is noticed that garments, textile and leather industries together have shown remarkable growth in the last decade. All the industries are more or less related to the national GDP growth. Some are export oriented while others address the internal market. Therefore analysis presented here should be helpful for policy makers to prioritize the sectors in case preferential supply and tariff adjustments become necessary.DOI: http://dx.doi.org/10.3329/jce.v27i1.15846 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 1-7


Sign in / Sign up

Export Citation Format

Share Document