Consideration of Variability of Concrete Characteristics in Calculation of Reinforced Concrete Structures

2016 ◽  
Vol 871 ◽  
pp. 166-172 ◽  
Author(s):  
Vladimir Popov ◽  
Valeriy Morozov ◽  
Yury Pukharenko ◽  
Mikhail Plyusnin

The objective of this study is to analyze the effect of variability of concrete stress-strain characteristics on the bearing capacity of eccentrically compressed reinforced concrete elements. Relevance of this issue is caused by wide application of the nonlinear stress-strain model for calculations of reinforced concrete structures. A distinctive feature of calculations with the use of the nonlinear stress-strain model is the need of joint use of concrete strength and stress-strain characteristics. In addition to that, valid regulations of Russian Federation deal with the average values of stress-strain characteristics, and there are no information on their variability.

2018 ◽  
Vol 7 (3.2) ◽  
pp. 275
Author(s):  
Тatiana Nikiforova ◽  
Olga Gukasian ◽  
Nataliia Mahas

In this work the experimental research cycle is described. This cycle is an affect studying of the most widespread concrete defect types, such as concrete core weakening is an inclusion of the "weak" concrete, the presence of emptiness, concrete heterogeneous by the height. The research of the manufacturing conditions affect of combine concrete core structures and the elements of physical and mechanical characteristics changing are on the experimental research base. On the researches testing base of samples with special form and given sizes the concrete strength value is appreciated. The different variants of strength decreasing on the researched element height are analyzed by the conducted testing results of the steel reinforced concrete structures. As a result of the conducted tests, the work conditions coefficient and the steel reinforced concrete elements concreting technology were formulated.  


2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


2019 ◽  
Vol 289 ◽  
pp. 08005
Author(s):  
Martin Schneider ◽  
Georg Gardener

Corrosion of reinforcing steel has a great influence in reducing the lifetime of concrete structures; Carbonation of the concrete pore solution causes surface corrosion on the steel and diffusion of chloride ions through the capillary system of the concrete cover causes pitting corrosion on the steel surface. Corrosion of metals is highly dependent on the environmental conditions. Exposure to chloride ions can be critical to the service life of reinforced concrete structures. The durability of reinforced concrete structures exposed to deicing salt or marine environments can be affected by impact of chloride ions. Detection methods for the rate of corrosion of non-destructive and destructive procedures were analysed. The potential mapping applied on the concrete surface was discussed as a standard method for corrosion detection and will be explained in detail including the application boundaries of the method. It is assumed that the corrosion behaviour of reinforcing steel depends on crack widths. To analyse that, 8 coated and 8 uncoated test samples with different concrete strength classes were used. The concrete objects were exposed to a 3% sodium chloride solution. The corrosion behaviour of reinforcing steel is analysed by using potential mapping with different reference electrodes (Ag/AgCl and Cu/CuSO4). The results show a significant correlation between crack size and protection system on the surface. The maximum crack width with a low indication of corrosion was found to be 0.1 mm.


2019 ◽  
Vol 91 ◽  
pp. 02043
Author(s):  
Andrew Varlamov ◽  
Sergey Tverskoi ◽  
Vadim Gavrilov

The article analyzes the sizes of concrete samples. We revealed a possibility to reduce sizes of samples. We simultaneously carried out tests of standard and small (25x25x100 mm) concrete samples. Small samples were obtained by cutting standard samples. In the course of study, the density, strength, and deformation of standard and small specimens were measured. The results are presented in tables and graphs. The strength of small samples was lower than the strength of reference samples. We identified loss of strength of the samples when cutting concrete. The average characteristics of deformation of concrete remained. Small samples are recommended for use in assessing the stress-strain state of reinforced concrete structures.


2021 ◽  
Vol 350 ◽  
pp. 00011
Author(s):  
Mikalai Shalabyta ◽  
Elizabeth Matweenko ◽  
Nikifor Matweenko ◽  
Valery Rakhuba

Comparative analysis of calculations of calculation numerical models for pulling out embedded parts in reinforced concrete structures is carried out. Based on the results of numerical modeling, new information about the stress-strain state in reinforced concrete elements from the local action of the tensile force has been obtained.


2015 ◽  
Vol 14 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Bartosz Szostak ◽  
Maciej Trochonowicz

During designing in historical object we can have a problem with historical reinforced concrete elements. Many designers, classifies this elements as low strength. They are convicted that this type of elements in historical building can be only a monument and cannot be used in this construction as an structural element. It is very important in this type of buildings to keep as many historical material as it is possible. Authors researched the literature which has been a guide in the design and execution of these elements. By comprising used algorithms and physico-mechanical properties of old materials with algorithms and materials, which are using today, we are able to estimate the strength of such elements.


Sign in / Sign up

Export Citation Format

Share Document