Compressive Strength Development of High Strength High Volume Fly Ash Concrete by Using Local Material

2016 ◽  
Vol 872 ◽  
pp. 271-275 ◽  
Author(s):  
Mochamad Solikin

This paper presents a research to produce high strength concrete incorporated with fly ash as cement replacement up to 50% (high volume fly ash concrete) by using local material. The research is conducted by testing the strength development of high volume fly ash concrete at the age of 14 days, 28 days and 56 days. As a control mix, the compressive strength of Ordinary Portland Cement (OPC) concrete without fly ash is used. Both concrete mixtures use low w/c. consequently, they lead to the use of 1 % superplasticizer to reach sufficient workability in the process of casting. The specimens are concrete cubes with the dimension of 15 cm x15 cm x 15 cm. The totals of 24 cubes of HVFA concrete and OPC concrete are used as specimens of testing. The compressive strength design of concrete is 45 MPa and the slump design is ± 10 cm. The result shows that the compressive strengths of OPC concrete at the age of 14 days, 28 days, and 56 days are 38 MPa, 40 MPa, and 42 MPa. Whereas the compressive strength of HVFA concrete in the same age of immersing sequence are 29 MPa, 39 MPa, and 42 MPa. The result indicates that HVFA concrete can reach the similar compressive strength as that of normal concrete especially at the age of 56 days by deploying low water cement ratio.

2018 ◽  
Vol 70 (11) ◽  
pp. 541-557 ◽  
Author(s):  
Gollapalli S. Vijaya Bhaskara ◽  
Kanchi Balaji Rao ◽  
Madambikkattil B. Anoop

2019 ◽  
Vol 8 (3) ◽  
pp. 5289-5293 ◽  

Cement is the most abundantly used ingredient in the production of concrete due to which its production and use has increased manifold. To reduce the carbon footprint left by the cement production, fly ash is used as cement replacement in concrete. Past research studies suggest that the fly ash replacement can be upto 40% beyond which there will be drastic reduction of strength. In the present study, high strength concrete mix of 70 grade is developed with high volume fly ash of 70% as cement replacement. Silica fume of 10% and hydraulic lime of 30% are used as additives in the development of M70 grade high-strength high-volume fly ash concrete. In the present paper, three types of fly ashes are considered for the study of which one which is ultrafine is chosen based on the pozzolanic index and strength activity index. Excess lime needed for various percentage of fly ashes is evaluated based on the empirical equationsgiven by the Dunstan Jr andZayed


2020 ◽  
Vol 10 (20) ◽  
pp. 7107
Author(s):  
Pham Sy Dong ◽  
Nguyen Van Tuan ◽  
Le Trung Thanh ◽  
Nguyen Cong Thang ◽  
Viet Hung Cu ◽  
...  

This research investigated the effect of fly ash content on the compressive strength development of ultra-high-performance concrete (UHPC) at different curing conditions, i.e., the standard curing condition and the heat curing. A total of 20 mixtures were prepared to cast specimens to measure the compressive strength at different ages from 3 days to 180 days. Additionally, 300 specimens were prepared to estimate the appropriate heat curing period at the early ages in terms of enhancing the 28-day compressive strength of UHPC with high content of fly ash (FA). From the regression analysis using test data, empirical equations were formulated to assess the compressive strength development of UHPC considering the FA content and maturity function. Test results revealed that the preference of the addition of FA for enhancing the compressive strength of UHPC requires the early heat curing procedure which can be recommended as at least 2 days under 90 °C. Moreover, the compressive strength of UHPC with FA under heat curing mostly reached its 28-day strength within 3 days. The proposed models based on the fib 2010 model can be a useful tool to reliably assess the compressive strength development of UHPC with high-volume fly ash (HVFA) (up to 70% fly ash content) under a heat curing condition that possesses a different performance from that of normal- and high-strength concrete. When 50% of the cement content was replaced by FA, the embodied CO2 emission for UHPC mixture reduced up to approximately 50%, which is comparable to the CO2 emission calculated from the conventional normal-strength concrete.


2016 ◽  
Vol 722 ◽  
pp. 157-162 ◽  
Author(s):  
Martin Labaj ◽  
Rudolf Hela ◽  
Iveta Hájková

By volume, there is no other material used as much as concrete. Its mechanical properties, durability and favorable price makes concrete the perfect construction material. In last few decades, we are seeing a growing trend of partial Portland cement’s replacement with secondary raw materials, most commonly with fly ash. So-called high volume fly ash (HVFA) concretes usually contains over 50% of it. While HVFA concrete’s long-term properties and price are improved over the classical one, its early age properties are often affected negatively. Here, a highly reactive pozzolans enters the scene. Materials like microsilica and metakaolin are known to accelerate concrete’s strength development and improve early age characteristics. In this paper, nanosilica is used for this purpose. These SiO2 nanoparticles possesses a much higher surface area and thus reactivity. Three mixtures with 0, 40 a 60% portland cement’s replacement with fly ash were prepared and tested with and without addition of small amount of nanosilica. Effects on compressive strength, static and dynamic moduli of elasticity and resistivity against water pressure were observed. Results clearly demonstrates that even with dosage in the range of tenths of percent, nanosilica can significantly improve concrete’s properties.


Sign in / Sign up

Export Citation Format

Share Document