Preparation and Characterization of Mechanical Properties of Hydroxyapatite/Carbon Nanotube Laminated Ceramic Composites Consolidated by Spark Plasma Sintering

2018 ◽  
Vol 913 ◽  
pp. 466-472
Author(s):  
Ye Meng ◽  
Wen Jiang Qiang ◽  
Jing Qin Pang

Laminated xCNTs-HAP/yCNTs-HAP ceramic composites were consolidated using a spark plasma sintering(SPS) technique at SPS temperature 900°C, pressure 40MPa and holding time 5min. The effect of carbon nanotubes content and thickness of each layer on mechanical properties of the composites was investigated. It was demonstrated that the stratified structure improvedthe flexural strength obviously. All the flexural strength of laminar compositewashigher than that of single CNTs-HAP ceramic, up to 112.4MPa. Since the matrix of each layer wereHAP, the difference liesonly in the content of carbon nanotubes, thus avoiding the common problem of the interlayer bonding in other layered composites with different materials. In order to characterize the toughness of the layered composite, the stress-strain curve was compared showingthat the existence of the stratified structure improved the stress-strain obviously.

2018 ◽  
Vol 281 ◽  
pp. 125-130
Author(s):  
Nan Lu ◽  
Jia Xi Liu ◽  
Gang He ◽  
Jiang Tao Li

MgO/Graphene ceramic composites were fabricated by combining combustion synthesis with spark plasma sintering. MgO/Graphene mixture powders were prepared by the combustion reaction between Mg powders and CO2 gas. Dense MgO/Graphene composites were fabricated by spark plasma sintering (SPS) using LiF as the sintering additive. The effect of the sintering temperature on microstructure and mechanical properties of the prepared MgO/Graphene ceramics was discussed. The sintering temperature of the MgO/Graphene mixture powders increased from 900°C to 1300°C. The highest density of 3.43g/cm3 and hardness of 2133MPa were obtained at 1100°C. Compared with monolithic MgO ceramics, the hardness of MgO/Graphene ceramics at the same sintering temperature was increased from 840MPa to 2133MPa.


2006 ◽  
Vol 21 (6) ◽  
pp. 1460-1466 ◽  
Author(s):  
Diletta Sciti ◽  
Laura Silvestroni ◽  
Alida Bellosi

HfB2–15 vol% MoSi2 composites were produced from powder mixtures and densified through different techniques, namely hot pressing and spark plasma sintering. Dense materials were obtained at 1900 °C by hot pressing and at 1750 °C by spark plasma sintering. Microstructure and mechanical properties were compared. The most relevant result was for high-temperature strength: independent of the processing technique, the flexural strength in air at 1500 °C was higher than 500 MPa.


2012 ◽  
Vol 512-515 ◽  
pp. 932-935
Author(s):  
Ying Peng ◽  
Zhi Jian Peng ◽  
Xiao Yong Ren ◽  
Hui Yong Rong ◽  
Cheng Biao Wang ◽  
...  

TiCN-based cermets with different amounts of SiC nano-whiskers were prepared by spark plasma sintering. The microstructure and mechanical properties of the as-prepared cermets were investigated. X-ray diffraction revealed that there were no SiC peaks detected, turning out some peaks of new carbide and silicate hard phases. Scanning electron microscopy indicated that there were more and more pores in the cermets with increasing amount of SiC whisker added, and the fracture mechanism of the cermets was mainly inter-granular fracture. With increasing addition amount of nano-SiC whisker, the hardness and flexural strength of the cermets increased first and decreased then, presenting the highest hardness (2170 HV) and flexural strength (750 MPa), respectively, when the addition content of nano-whiskers is 2.5 wt%.


Sign in / Sign up

Export Citation Format

Share Document