Machinability for C/SiC Composite Material by Electrical Discharge Machining

2018 ◽  
Vol 913 ◽  
pp. 536-541
Author(s):  
Yong Fu Zhang ◽  
Wei Wei Chen ◽  
Huan Wu Cheng ◽  
Yu Ping Zhang

A new method was adopted in this study to machine C/SiC composite. The machinability was studied by processing some shapes in the material in this way. Small deep holes were machined firstly to test whether the copper electrode was suitable enough to be adopted in the Electrical Discharge Machining. Then holes of different diameters were processed by two kinds of electrodes to study the more appropriate electrode material by comparing machining efficiency of two electrodes. Then complicated shapes were machined based on these conditions. Finally, a simulation model was built up to study the influence of the fluid on the electrode and the workpiece in the Fluent 6.3. According to the study, Electrical Discharge Machining Technology is suitable enough to machine the hard and brittle materials like C/SiC composite and the accuracy that the error should not exceed 0.5 mm can also be guaranteed well.

2011 ◽  
Vol 399-401 ◽  
pp. 1667-1671 ◽  
Author(s):  
Yun Hai Jia

The electrode material is playing the very important role in the electrical discharge machining. Two kinds of electrode materials common used in EDM are compared and analyses similarities and differences in structure and physical characteristics. Combined with PcBN tool machining tests, from the electric discharge machining efficiency, electrode wear, tool surface quality, tool surface degenerating layer, machining results are in analysis and comparison, and then different electrode materials machining technics in electrical discharge machining process are summarized. Through the cutting tool electric discharge machining experiments, we can know that the graphite electrode easy to take shape, suits in the complex edge's cutting tool electric discharge machining, under the same electric discharge machining parameter condition, its processing efficiency must be higher than the copper electrode, but the electrode loses, the cutting tool surface quality and affect layer thickness are to be worse than the copper electrode.


2004 ◽  
Vol 471-472 ◽  
pp. 830-833
Author(s):  
Meng You Huo ◽  
Jin Quan Xu ◽  
Jian Hua Zhang ◽  
Xing Ai ◽  
Yu Jing Hu

This paper presents a PMAC-based combined CNC machine that integrates technologies of ultrasonic machining, electrical discharge machining and high speed grinding. As a multifunctional machine, it can provide diverse machining methods for different materials. For hard and brittle materials, it can conduct ultrasonic machining and high-speed grinding respectively or in a combined form; for conductive hard and brittle materials, electrical discharge machining with or without ultrasonic vibration could be implemented. Driven by AC servomotors, the mechanical structure of the vertical machine is mainly composed of a cross workbench for work piece handling, and a spindle head for tool feeding or high speed rotating. Besides those mentioned above, the system management program, the pulse power generator as well as the ultrasonic generator are also analyzed in this paper. Experimental results show that this machine has a wide range of application indeed and is suitable for various materials processing.


2021 ◽  
Vol 344 ◽  
pp. 01016
Author(s):  
Evgeny Shalunov ◽  
Valentin Smirnov ◽  
Vladimir Plotnikov ◽  
Yulia Vladimirova

The article deals with long-length tubular electrode-tools made of the engineered composite [(WC+3wt%Co)+3wt%BN)]+14wt%Cu, which, during electrical discharge piercing of holes in a hard alloy WC+6wt%Co (ISO 513:2012) in the optimal mode, have a productivity that is almost 8 times higher than the productivity of the process, when it is performed using copper electrode-tools. Therewith, electrical discharge wear of the electrode-tools made of the new material is 4.1 ... 4.5 times less than the wear of the copper electrode-tools. To obtain hollow electrodetools from the specified material, the powder composition was radially molded by the pressure of a impulsed magnet field, and the resulting porous blank was impregnated with copper during its further sintering.


Author(s):  
Ze Yu ◽  
Dunwen Zuo ◽  
Yuli Sun ◽  
Guohua Li ◽  
Xuemei Chen ◽  
...  

To simultaneously optimize the surface quality and machining efficiency of the electrical discharge machining (EDM) processes used to produce titanium alloy quadrilateral group small hole parts, a combined “EDM + AFM” machining technology is proposed in this paper as an efficient and high-quality machining approach. In the proposed method, TC4 titanium alloy is first machined using the EDM process with graphite electrodes and the abrasive flow machining (AFM) process is then used to finish the machined surface. The effects of various electrical parameters on EDM-derived surface quality and improvements in EDM-derived quality under the application of AFM were assessed and, using the final surface roughness as a constraint condition, the effects of various combinations of EDM and “EDM + AFM” on efficiency were studied. The results revealed that the thickness and surface roughness of the superficial recast layer of the TC4 titanium alloy increase with both current and pulse width; in particular, increasing these parameters can increase the surface roughness by two to three grades. Following AFM, the alloy has a more uniform hardness distribution and the surface stress state changes from tensile to compressive stress, indicating that the combined “EDM + AFM” machining scheme can significantly enhance the surface quality of EDM-produced titanium alloy quadrilateral small group holes. The combined scheme achieves a balancing point beyond which increasing the roughness or the number of machining holes enhances either the machining efficiency or the machining surface quality. In the case of typical titanium alloy quadrilateral group small hole parts, the combined machining process can improve the finishing efficiency and total machining efficiency by 71.2% and 25.36%, respectively.


Author(s):  
Yong Yang ◽  
Xiaochun Li

Micro ultrasonic Machining (MUSM) is useful for producing micro parts in brittle materials, especially ceramics. By use of suitable micro metallic dies, the efficiency of fabrication can be significantly enhanced. In this study, the LIGA process was used to generate micro nickel dies, which also served as microelectrodes in Die-sinking Electrical Discharge Machining (EDM) to produce micro tungsten dies for MUSM. With these micro metallic dies, micro ceramic components were fabricated.


2014 ◽  
Vol 590 ◽  
pp. 244-248
Author(s):  
Jamkamon Kamonpong ◽  
Pichai Janmanee

This research aimed to study the machining efficiency of AISI P20 steel by Electrical Discharge Machining (EDM) using rod copper electrode to machining material by 50 mm depth of machining was mainly assessed from Materials Removal Rate (MRR) and Electrode Wear Ratio (EWR). From the experiment designed to use Taguchi technique of data analysis and suitable parameter prediction, the highest MRR was at on-time of 150 μs, off-time of 2 μs and electric current level was at 15 A or 0.25 A/mm2. Predicted value was at 19.2395 mm3/min which was equal to real experiment, showing Materials Removal Rate of 19.647 mm3/min (with error of 2.12 percent) .Moreover, it was found that gap would increase with the size of electrode and depth of machining caused by movement of particles removed from side surface of electrode, which cause micro sparks at the side of the material workpiece.


Sign in / Sign up

Export Citation Format

Share Document