Effect of AlF3 Content on Microstructure and Properties of Mullite/Al2O3 Composite Ceramics

2018 ◽  
Vol 922 ◽  
pp. 62-67
Author(s):  
Ke Zheng Sang ◽  
Fan Wang ◽  
De Jun Zeng ◽  
Hong Wei Li

To reinforce the mullite/Al2O3 composite ceramics through formation of mullite whiskers, the composite ceramics were prepared by pressureless sintering using different AlF3 content. The microstructure, porosity, fracture toughness and thermal shock resistance of the composite ceramics were investigated. The results show that the addition of AlF3 can promote the mullite whisker formations, and the whiskers with the size of 3~10μm in diameter and a length-diameter ratio of 10~15 are obtained by sintering at 1600°C with the AlF3 content of 5wt%. Fracture toughness and thermal shock resistance of the composite ceramics are improved by the formation of mullite whisker. The fracture toughness of 4.79MPa•m1/2 can be obtained, and the 95.18% flexural strength remained after thermal shock.

2012 ◽  
Vol 455-456 ◽  
pp. 650-654 ◽  
Author(s):  
He Yi Ge ◽  
Jian Ye Liu ◽  
Xian Qin Hou ◽  
Dong Zhi Wang

The physical and mechanical properties of nanometer ZrO2-ZrO2fiber composite ceramics were studied by introduction of ZrO2fiber. ZrO2composite ceramics at different sintering temperature was investigated by porosity and water absorption measurements, flexual strength and thermal shock resistance analysis. Results showed that ZrO2composite ceramics containing 15 wt% ZrO2fiber with sintering temperature of 1650°C exhibited good mechanical properties and thermal shock resistance. The porosity and the water absorption were 8.84% and 1.62%, respectively. The flexual strength was 975 MPa and the thermal shock times reached 31 times. Scanning electron microscope (SEM) was used to analyze the microstructure of ZrO2composite ceramics.


2009 ◽  
Vol 79-82 ◽  
pp. 1983-1986 ◽  
Author(s):  
Xiao Li Ji ◽  
Fei Xu ◽  
Hai Ya Chen

Prepared silicon carbide(SiC) ceramic foams combined with mullite whiskers which synthesized by in-situ reaction. Studied on the influence of temperature on the synthesis of mullite whisker, and the influence of mullite content on the compressive strength, thermal shock resistance of SiC ceramic foams. The results indicate that the performance of mullite whiskers synthesized at 1400°Cwere best, when mullite content was 25%, SiC ceramic foams could reach the maximum compressive strength for 1.75MP, the most thermal shock resistance for14 times.


2010 ◽  
Vol 434-435 ◽  
pp. 106-108
Author(s):  
Ping Liu ◽  
Yong Feng Li ◽  
Xiang Dong Wang ◽  
Hai Yun Jin ◽  
Guan Jun Qiao

Si3N4/BN composite ceramics with 25vol% h-BN were prepared by pressure-less sintering process with Nd2O3/Al2O3/Y2O3 as sintering additives. The effects of these ternary additives on the densification behaviors and mechanical properties were investigated. XRD and FESEM were used to investigate the α-β phase transformation and microstructure. The XRD results showed that α-Si3N4 has transformed to β-Si3N4 completely in all the samples during the pressureless sintering process. The line shrinkage increased with the Nd2O3 contents increasing, and the highest line shrinkage (7.75%) was observed when 4wt% Nd2O3 was added, then decreased. The same trends were observed in flexural strength and fracture toughness testing. The ternary additives of Y2O3-Al2O3-Nd2O3 could improve the density, strength and fracture toughness of the material effectively.


2011 ◽  
Vol 415-417 ◽  
pp. 138-141
Author(s):  
Rui Sheng Wang ◽  
Jun Hong Zhao ◽  
Ying Na Wei ◽  
Fu Hua Peng ◽  
Heng Yong Wei

β-Sialon bonded ZrO2 composites were prepared by reaction sintering process using β-Sialon and CaO stabilized ZrO2 powders as raw materials.The effect of β-Sialon powder additions on the properties of the composites was investigated. The results show that the samples with 10 wt% of β-Sialon addition had the lowest apparent porosity (29.80%) and the highest of flexural strength (68.70MPa). The thermal shock resistance in carbon addition of the composites could be improved by addtion of 5wt% β-Sialon. It may be relative with that the sample had the lowest thermal expansion coefficient in vacuum.


Carbon ◽  
1981 ◽  
Vol 19 (2) ◽  
pp. 111-118 ◽  
Author(s):  
S. Sato ◽  
K. Kawamata ◽  
H. Awaji ◽  
M. Osawa ◽  
M. Manaka

2017 ◽  
Vol 43 (2) ◽  
pp. 1762-1767 ◽  
Author(s):  
Xiaohong Xu ◽  
Jingwen Li ◽  
Jianfeng Wu ◽  
Zhaohui Tang ◽  
Linlin Chen ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 484-487
Author(s):  
Ying Na Zhao ◽  
Gang Chang ◽  
Gang Liu ◽  
Hai Bo Song ◽  
Wen Li Zhang

Mullite-aluminum titanate-cordierite multiphase ceramics were prepared by high alumina clinker, Aluminum Titanate and Cordierite. The sintering property and thermal shock resistance of composite materials were tested. The experimental results show that the sinter property and themal shock resistance of Mullite-aluminum titanate-cordierite multiphase ceramics are relatively preferably, which the materials composition are 30 wt.% high alumina clinker, 60 wt.% cordierite and 10 wt.% aluminum titanate. The component samples show porosity of 33.17%, volume density 1.9 % and normal temperature flexural strength 20.66 MPa. Thermal residual flexural strength of the samples is still as high as 10.29 Mpa by 5 times thermal residual tests, and there are only little flexural strength lower after three times earthquake test.


Sign in / Sign up

Export Citation Format

Share Document