Iron Ore Tailing as Addition to Partial Replacement of Portland Cement

2018 ◽  
Vol 930 ◽  
pp. 125-130 ◽  
Author(s):  
Luciano Fernandes de Magalhães ◽  
Isabella de Souza Morais ◽  
Luis Felipe dos Santos Lara ◽  
Domingos Sávio de Resende ◽  
Raquel Maria Rocha Oliveira Menezes ◽  
...  

The manufacture of Portland cement used in the production of concrete emits large amounts of CO2into the atmosphere, contributing to the increase of the greenhouse effect. The environmental impact generated by the mineral exploration activity is a problem of easy verification, especially in open pit mines. The present work evaluated the possibility of using iron ore tailing as an addition to the partial replacement of the cement in mortars. The iron ore tailings were processed by drying in oven (48h at 105oC) and milling in a planetary mill (10min at 300RPM), obtaining medium grain size of 14,13 μm. For the characterization, laser granulometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal and thermogravimetric analysis (DTA / TGA) were performed. The sample is composed predominantly by quartz, hematite, goethite and gibbsite. After the characterization, the waste was used in the preparation of test specimens, with 10, 20 and 30% weight substitution of the cement. The composites were submitted to compression tests, with ages of 3, 7 and 28 days, using a strength rate of 0,25MPa/s. The mortars with 10, 20 and 30% of substitution presented resistance of 41.65, 36.26 and 31.64 MPa, being able to be characterized as category of Portland cement of resistance 40, 32 and 25 respectively. Considering the reduction of cement in the mortars produced, the results of compressive strength were relevant for the substitutions. The cements produced with the substitutions according to the Brazilian standards under the mechanical aspect can be classified as Portland cement.

Author(s):  
Ottávio Carmignano ◽  
Sara Vieira ◽  
Ana Paula Teixeira ◽  
Fernando Lameiras ◽  
Paulo Roberto Brandão ◽  
...  

Currently, approximately 1.4 billion tons per year of iron ore tailing wastes (IOT) are generated, mainly in Australia, Brazil, and China. This work describes the characterization and application of two typical IOT, i.e., fine and coarse wastes. The physicochemical characterization of these IOT by different techniques such as XRF (X-ray fluorescence), XRD (X-ray diffraction), Mössbauer spectroscopy, and granulometry, indicates for the fine tailing a composition of Fe2O3/FeOOH (10-55%), SiO2 (18-65%) and Al2O3 (up to 15%) with particles of 6-40 μm, whereas the coarse tailing presents 40-150 μm particles with the composition of 8-48% Fe2O3/FeOOH, 30-90% SiO2 and Al2O3 (up to 20%). The main IOT applications discussed in this review are related to civil construction (aggregates for concrete, mortar, Portland cement additives), ceramic industry, geopolymer, synthesis of new materials such as zeolites, mesoporous silica, carbon nanotubes, adsorbents, catalysts for different reactions, in batteries and in fuel cells. It was also carried out an analysis of patents related to IOT applications and the main technological and market barriers that hinder the industrial and commercial uses of these wastes.


2018 ◽  
Vol 761 ◽  
pp. 175-180 ◽  
Author(s):  
Janneth Torres Agredo ◽  
Sergio Gallego Restrepo ◽  
Fernando Álvarez Hincapié ◽  
Daniela Giraldo Alzate

In this work, the preliminary study about the use of secondary lead smelting slag (SLSS) as an addition to Portland cement is presented. SLSS is a waste from a Colombian secondary lead smelter. The chemical, physical and mineralogical characteristics of the raw materials were evaluated by X-ray fluorescence, particle size and X-ray diffraction. To assess the SLSS pozzolanic activity, the ASTM C618 standards were used. Additionally, cement pastes added with SLSS as Portland cement replacement in proportions of 0, 5, 10, 20 and 30% were prepared, to study the hydration process at 7, 14 and 28 of curing times. To determine the hydration products the technique of X-ray diffraction was used. Furthermore, the environmental test TCLP (Toxicity Characteristic Leaching Procedure) was performed in pastes with 28 days of curing time. Results showed that SLSS reported an index of pozzolanic activity of 87%, this value meets the standard (greater than 75%). The hydration process showed that since early curing time the waste presented a good reactivity. TCLP results satisfied the environmental standards. The outcomes showed that this waste could be used as a partial replacement of Portland cement.


2010 ◽  
Vol 168-170 ◽  
pp. 1653-1657
Author(s):  
Shu Hui Zhang ◽  
Zhi Qiang Kang ◽  
Qing Lu

Foam glass composite with good capabilities was prepared from iron ore tailings as the main material by two steps. The phase composition and microstructure were determined by X-ray diffraction and scanning electron microscopy. The effects of foaming temperature and sintering temperature on sample capabilities were studied by determining sample bulk density and compression strength. The results show that the main phase of basis glass powder is amorphous mineral. The foam glass composite with enclosed circle pore mainly concludes Ca[(Fe,Mg)][SiO3]2 and amorphous glass. The diameter size of pore is wide and distributes evenly. The foam glass composite, whose compression strength is 62.25MPa, and bulk density is 2.056 g/cm3, has fine complex capabilities. With the increase of foaming temperature the sample pore diameter size raises, while bulk density and compression strength reduces. The bulk density and compression strength all diminish firstly and raise subsequently with the sintering temperature increasing. The optima temperature parameters are foaming temperature of 900~950 and sinter temperature of 1100 .


2009 ◽  
Vol 610-613 ◽  
pp. 281-284 ◽  
Author(s):  
Ming Liu ◽  
Li Hua Xu ◽  
Xiao Meng Zhang ◽  
Hong Shun Hao ◽  
Yun Ping Di

In this paper, the research mainly focused on utilization of iron ore tailing of Panzhihua region. Based on the analysis of its components, Carbothermal Reduction Nitridation (CRN) method was selected to synthesize eco-friendly composite material. Different additives were tried to improve the property of the samples. The influence of different sintering temperature, holding time and contents of additives were taken into account, and orthogonal design was employed to obtain the optimal parameters. It indicated that only when the temperature was 1450°C and the holding time was 5 hours, the samples with the bulk density of 3.42g/cm3 was obtained. The phase and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Experimental results showed that the phases of the product were Fe3Si and TiC0.3N0.7. The research provided a novel recycling process for ore tailings.


2012 ◽  
Vol 32 (5) ◽  
pp. 810-821 ◽  
Author(s):  
Débora C. G. de Oliveira ◽  
Michelle S. Rodrigues ◽  
Sérgio F. dos Santos ◽  
Holmer Savastano Junior

The deep bedding is a swine alternative production, especially in the finishing phase, whose byproduct can be recycled, reducing the environmental impact. The objectives of this study were to characterize the ash coming from the controlled burning of the swine deep bedding (SDBA) based on rice husk, and to evaluate their performance in composites as a partial substitute for Portland cement (PC). To measure the differences between SDBA and rice husk ash (RHA) as a reference, we have characterized: particle size distribution, real specific density, x-ray diffraction, electrical conductivity, scanning electron microscopy, chemical analysis and loss on ignition. Samples were prepared for two experimental series: control, and another one with the partial replacement of 30% of SDBA in relation to the mass of the Portland cement. According to the results obtained for physical and mechanical characterization, the composites with SDBA can be used as a constructive element in the rural construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Daiqiang Deng ◽  
Guodong Cao ◽  
Youxuan Zhang

The strength of the filling body is largely affected by the properties of the binder, mineral composition, fineness, and slurry concentration of tailing. In this paper, the rheological test was conducted to determine the slurry concentration of iron ore tailing containing gypsum. Then, the samples made from slurry and three binders, Portland cement, filling plant binder, and Huazhong binder, were tested, respectively. The effects of curing time, binder-tailing ratio by mass (b/t), and slurry concentration on compression strength were investigated. The sample made from Huazhong binder and iron ore tailing presented the largest compression strength.


2020 ◽  
pp. 46-49
Author(s):  
I. V. Zenkov ◽  
◽  
A. S. Morin ◽  
V. N. Vokin ◽  
E. V. Kiryushina ◽  
...  

Remote sensing data have allowed detecting and monitoring of arrangement of mining and haulage machines in open pit mines producing coal and iron ore in Russia. In coal mining, the highest concentration of mining and haulage equipment is revealed in open pit mines in Kuzbass; in the iron ore industry, open pit mines in the Belgorod and Kursk Regions operate 70% of the total equipment employed in the mining sector. The authors draw a conclusion on the essentiality of strengthening of in-house mining machine engineering in Russia and on creation of interregional centers for maintenance and repair of mining and haulage equipment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sivakumar Gowthaman ◽  
Meiqi Chen ◽  
Kazunori Nakashima ◽  
Satoru Kawasaki

Peat is one of the most challenging and problematic soils in the fields of geotechnical and environmental engineering. The most critical problems related to peat soils are extremely low strength and high compressibility, resulting in poor inhabitancy and infrastructural developments in their vicinity. Thus far, peat soils were stabilized using Portland cement; however, the production of Portland cement causes significant emission of greenhouse gases, which is not environmentally desirable. Microbial-induced carbonate precipitation (MICP) is an innovative technique for improving the mechanical properties of soil through potentially environmentally friendly processes. This article presents a laboratory study carried out with the aim of investigating the viability and effect of scallop shell powder (SSP) on enhancing the mechanical properties of the MICP-treated amorphous peat. The hypothesis was that the distribution of SSP (as-derived calcite particles) would (i) provide more nucleation sites to precipitates and (ii) increase the connectivity of MICP bridges to facilitate mineral skeleton to amorphous peat, accompanied by an increase in its compressive strength. Specimens were treated at varying combinations of SSP and MICP reagents, and the improvement was comprehensively assessed through a series of unconfined compression tests and supported by microscale and chemical analyses such as scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction analysis. The outcomes showed that incorporating SSP in MICP treatment would be a promising approach to treat amorphous peat soils. The proposed approach could improve the unconfined compressive strength by over 200% after a 7-day curing period, while the conventional MICP could not exhibit any significant improvements.


Author(s):  
D. Schläpfer ◽  
R. Richter ◽  
C. Popp ◽  
P. Nygren

Abstract. The acquisition of imaging spectroscopy data from ground based rotating stages is a novel approach which is more and more used in open pit mines for prospection and controlling. The special radiometric situation of such data sets asks for new processing approaches for geometric processing as well as for reflectance retrieval. Herein, a new method for atmospheric correction and relative reflectance retrieval is presented which is optimized for the special horizontal scanning situation by hyperspectral instruments from rotating ground based platforms. The method is implemented within the recently developed drone atmospheric correction framework DROACOR®. It combines a physical inversion of a radiative transfer code with semi-empirical correction approaches for illumination and spectral absorption. Sample results from two open pit mines show that mineral detection after reflectance retrieval allows the discrimination of iron minerals and that the retrieved spectra are well comparable to standard library spectra.


Sign in / Sign up

Export Citation Format

Share Document