Model of Electro-Pulse Processing of Metals Melts

2020 ◽  
Vol 989 ◽  
pp. 116-120
Author(s):  
N.A. Shaburova ◽  
E.V. Litvinova ◽  
R.R. Naraeva

Questions of influence of nanosecond electromagnetic impulses on melts of metals are considered in the article. The analysis of action of impulses on electromagnetic hashing and thermal conditions of a melt showed their small influence. Mechanical (acoustic) action is chosen as the main one. Formulas and values for coefficients of transformation of electromagnetic field to the acoustic one for a number of metals are given. The transformation model in the form of the wave of current running on the radiator is offered. Comparison of action of electromagnetic impulses on melts showed that emergence of acoustic vibrations is the main thing. The theory of contactless transformation of electromagnetic waves in acoustic ones is considered. Comparison with experiments is given. The model of contact electro-pulse processing of metal melts in the form of transition of an electromagnetic wave to acoustic is offered. Acoustic waves change structure of a melt, condition of a crystallization of a melt and improve properties of the hardened metal.

2021 ◽  
pp. 2150339
Author(s):  
Lanre Akinyemi ◽  
Pundikala Veeresha ◽  
Samuel Oluwatosin Ajibola

The primary goal of this paper is to seek solutions to the coupled nonlinear partial differential equations (CNPDEs) by the use of q-homotopy analysis transform method (q-HATM). The CNPDEs considered are the coupled nonlinear Schrödinger–Korteweg–de Vries (CNLS-KdV) and the coupled nonlinear Maccari (CNLM) systems. As a basis for explaining the interactive wave propagation of electromagnetic waves in plasma physics, Langmuir waves and dust-acoustic waves, the CNLS-KdV model has emerged as a model for defining various types of wave phenomena in mathematical physics, and so forth. The CNLM model is a nonlinear system that explains the dynamics of isolated waves, restricted in a small part of space, in several fields like nonlinear optics, hydrodynamic and plasma physics. We construct the solutions (bright soliton) of these models through q-HATM and present the numerical simulation in form of plots and tables. The solutions obtained by the suggested approach are provided in a refined converging series. The outcomes confirm that the proposed solutions procedure is highly methodological, accurate and easy to study CNPDEs.


1960 ◽  
Vol 31 (2) ◽  
pp. 439-440 ◽  
Author(s):  
Hans J. Schmitt ◽  
Dipak L. Sengupta

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Long ◽  
Danmei Zhang ◽  
Chenwen Yang ◽  
Jianmin Ge ◽  
Hong Chen ◽  
...  

Abstract Spin angular momentum enables fundamental insights for topological matters, and practical implications for information devices. Exploiting the spin of carriers and waves is critical to achieving more controllable degrees of freedom and robust transport processes. Yet, due to the curl-free nature of longitudinal waves distinct from transverse electromagnetic waves, spin angular momenta of acoustic waves in solids and fluids have never been unveiled only until recently. Here, we demonstrate a metasurface waveguide for sound carrying non-zero acoustic spin with tight spin-momentum coupling, which can assist the suppression of backscattering when scatters fail to flip the acoustic spin. This is achieved by imposing a soft boundary of the π reflection phase, realized by comb-like metasurfaces. With the special-boundary-defined spin texture, the acoustic spin transports are experimentally manifested, such as the suppression of acoustic corner-scattering, the spin-selected acoustic router with spin-Hall-like effect, and the phase modulator with rotated acoustic spin.


1996 ◽  
Vol 55 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Jin-Xiu Ma ◽  
M. Y. Yu ◽  
P. K. Shukla

Wave mixing resulting from the resonance of electromagnetic waves with ion acoustic waves modified by dust charge fluctuations is investigated. The corresponding nonlinear susceptibilities are derived and applied to the study of phase conjugation by four-wave mixing. It is shown that dust charge fluctuations can lead to a filling-up of the resonance-induced splitting of the phase-conjugate reflectivity, making the latter a useful tool for the diagnostics of dusty plasmas.


Wave Motion ◽  
2008 ◽  
Vol 45 (4) ◽  
pp. 428-444 ◽  
Author(s):  
A.N. Darinskii ◽  
E. Le Clezio ◽  
G. Feuillard

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maryamsadat Rafiei ◽  
Mostafa Sahrai ◽  
Mahboub Hosseinpour ◽  
Abdolrasoul Esfandyari-Kalejahi

Two-dimensional electromagnetic particle-in-cell simulations are carried out to investigate the effect of ion-to-electron mass ratio on the evolution of warm electron beam-plasma instability. Four cases are considered: A: mi/me = 0 (two-electron stream instability); B: mi/me = 1 (pair plasma); C: mi/me = 100; and D: mi/me = 1000. It is shown that the generation of Langmuir waves in the fundamental mode of electron plasma frequency and the subsequent dynamics of large-amplitude solitons are not affected by the ion species. However, it determines the decay process of solitons and the excitation of electromagnetic waves in the second harmonic. In the first two cases, mi/me = 0 and 1, there is no sign of emission in the second harmonic, while the strongest emission in the second harmonic is found for the case of largest mass ratio, mi/me = 1000. This confirms the two-step wave-wave coupling mechanism for the generation of second harmonic electromagnetic waves, which requires the excitation of ion-acoustic waves in the first step. Moreover, the dispersion diagrams of all excited waves are presented.


2020 ◽  
Vol 10 (2) ◽  
pp. 547 ◽  
Author(s):  
Jeonghoon Park ◽  
Dongwoo Lee ◽  
Junsuk Rho

Metamaterials are composed of arrays of subwavelength-sized artificial structures; these architectures give rise to novel characteristics that can be exploited to manipulate electromagnetic waves and acoustic waves. They have been also used to manipulate elastic waves, but such waves have a coupling property, so metamaterials for elastic waves uses a different method than for electromagnetic and acoustic waves. Since researches on this type of metamaterials is sparse, this paper reviews studies that used elastic materials to manipulate elastic waves, and introduces applications using extraordinary characteristics induced by metamaterials. Bragg scattering and local resonances have been exploited to introduce a locally resonant elastic metamaterial, a gradient-index lens, a hyperlens, and elastic cloaking. The principles and applications of metasurfaces that can overcome the disadvantages of bulky elastic metamaterials are discussed.


Sign in / Sign up

Export Citation Format

Share Document