Rheological Properties and Microstructure of PH1 Stainless Steel Produced by Selective Laser Melting

2020 ◽  
Vol 989 ◽  
pp. 811-815
Author(s):  
Sergey V. Gladkovskii ◽  
Denis Rinatovich Salikhyanov ◽  
Vladimir P. Volkov ◽  
Yurij A. Avraamov ◽  
Valeriya E. Veselova

The present study is focused on rheological properties of PH1 stainless steel, produced by selective laser melting (SLM), at temperatures of hot deformation, with the aim to investigate the dependence of strain resistance on temperature and strain degree. The tests of cylindrical specimens, made of PH1 stainless steel, were carried out using a cam plastometer in temperature range 700 – 1200 °C at a strain rate ξ equal to 1 s-1 up to strain degree e equal to 0.8 – 1.2. The paper presents the results of investigation of initial microstructure, microhardness measurement and flow curves of PH1 steel, produced by SLM method. The flow curves of PH1 steel produced by SLM can be used in the development of new methods of manufacturing the metallic parts by additive technologies with the use of deformation post-processing.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2468 ◽  
Author(s):  
Papula ◽  
Song ◽  
Pateras ◽  
Chen ◽  
Brandt ◽  
...  

Additive manufacturing (AM) is a rapidly growing field of technology. In order to increase the variety of metal alloys applicable for AM, selective laser melting (SLM) of duplex stainless steel 2205 powder and the resulting microstructure, density, mechanical properties, and corrosion resistance were investigated. An optimal set of processing parameters for producing high density (>99.9%) material was established. Various post-processing heat treatments were applied on the as-built predominantly ferritic material to achieve the desired dual-phase microstructure. Effects of annealing at temperatures of 950 °C, 1000 °C, 1050 °C, and 1100 °C on microstructure, crystallographic texture, and phase balance were examined. As a result of annealing, 40–46 vol.% of austenite phase was formed. Annealing decreased the high yield and tensile strength values of the as-built material, but significantly increased the ductility. Annealing also decreased the residual stresses in the material. Mechanical properties of the SLM-processed and heat-treated materials outperformed those of conventionally produced alloy counterparts. Using a scanning strategy with 66° rotation between layers decreased the strength of the crystallographic texture. Electrochemical cyclic potentiodynamic polarization testing in 0.6 M NaCl solution at room temperature showed that the heat treatment improved the pitting corrosion resistance of the as-built SLM-processed material.


2021 ◽  
Vol 1040 ◽  
pp. 172-177
Author(s):  
Liana Yu. Saubanova ◽  
Semen V. Diachenko ◽  
Valeriya S. Loray ◽  
Liubov A. Nefedova ◽  
Sergey P. Bogdanov ◽  
...  

Powders of X6CrNiTi18-10 stainless steel were fabricated from original workpieces of different grade by gas atomization method. It was found that it is necessary to use argon as a gas for gas atomization of X6CrNiTi18-10 steel, since the use of nitrogen leads to the formation of its compounds, namely, titanium nitride. It is shown that all used workpieces – electric arc, electric slag and vacuum arc refinement – allow one to obtain powders suitable for further utilization in selective laser melting technology of 3D printing. The main physicochemical and technological properties of the obtained powders have been investigated. Changes in the chemical composition and quality of the powders are not significant within the X6CrNiTi18-10 grade. The 0...20 μm fraction of powders does not have fluidity, and thus cannot be used for additive technologies. The fraction 20...63 μm have suitable rheological properties for additive technologies and may be used in selective laser melting (SLM) process. The yield of target fraction 20 ... 63 microns was ≈45%. The fraction 63...120 μm may be used for the direct metal deposition (DMD) additive technology. Considering the economic aspect of the technology, it is preferable to use original workpieces of X6CrNiTi18-10 steel produced by electric arc or electroslag process, since the market price of vacuum arc steel is significantly higher. The fraction of ferrite phase in the powder increases with a decrease of particle size of the resulting powder and is lower comparing to the original workpiece. In the future, for a detailed study of the technological properties, it is planned to grow samples from each type of the obtained powders on installation for selective laser melting and direct laser deposition to determine the physical and mechanical properties of fabricated samples (tensile and impact bending tests) and carry out metallographic studies.


Author(s):  
L. Lamagna ◽  
A. Paiella ◽  
S. Masi ◽  
L. Bottini ◽  
A. Boschetto ◽  
...  

AbstractIn the context of exploring the possibility of using Al-powder Selective Laser Melting to fabricate horn antennas for astronomical applications at millimeter wavelengths, we describe the design, the fabrication, the mechanical characterization, and the electromagnetic performance of additive manufactured horn antennas for the W-band. Our aim, in particular, is to evaluate the performance impact of two basic kinds of surface post-processing (manual grinding and sand-blasting) to deal with the well-known issue of high surface roughness in 3D printed devices. We performed comparative tests of co-polar and cross-polar angular response across the whole W-band, assuming a commercially available rectangular horn antenna as a reference. Based on gain and directivity measurements of the manufactured samples, we find decibel-level detectable deviations from the behavior of the reference horn antenna, and marginal evidence of performance degradation at the top edge of the W-band. We conclude that both kinds of post-processing allow achieving good performance for the W-band, but the higher reliability and uniformity of the sand-blasting post-process encourage exploring similar techniques for further development of aluminum devices at these frequencies.


Sign in / Sign up

Export Citation Format

Share Document