Virtual Demonstration Tests of Large-Scale and Complex Artifacts Using an Open Source Parallel CAE System, ADVENTURE

2006 ◽  
Vol 110 ◽  
pp. 133-142 ◽  
Author(s):  
Shinobu Yoshimura

The ADVENTURE project started as one of the research projects in the "Computational Science & Engineering" field selected for the "Research for the Future" Program sponsored by the Japan Society for the Promotion of Science during 1997-2002. Since March 2002, the project has continued as an independent project. In the project we have been developing an advanced general-purpose computational mechanics system, named ADVENTURE, running in various kinds of parallel and ditributed environments. The system is designed to be able to analyze a three-dimensional finite element model of arbitrary shape with 10-100 million DOFs mesh, and additionally to enable parametric and non-parametric shape optimization. The first version of the system has been released from the project website as open source software since March, 2002. 2,049 registered users in academia and industries have downloaded 12,827 modules and been using them, while one company has developed and released its commercial version named ADVENTUREcluster. The ADVENTURE system has been successfully implemented in various types of parallel and distributed environments including PC clusters, massively parallel processers such as Hitachi SR8000/MPP and the Earth Simulator, and Grid environments such as ITBL (IT-based Laboratory). The system has been successfully applied to solve various real world problems such as response of a full scale nuclear pressure vessel model and thermoelastic deformation of full scale electric mounting board of a mobile PC.

Author(s):  
Naibin Jiang ◽  
Feng-gang Zang ◽  
Li-min Zhang ◽  
Chuan-yong Zhang

The seismic analysis on reactor structure was performed with a new generation of finite element software. The amount of freedom degree of the model was more than twenty millions. The typical responses to operational basis earthquake excitation were given. They are larger than those with two-dimensional simplified finite element method, and the reasons of this phenomenon were analyzed. The feasibility of seismic analysis on large-scale three-dimensional finite element model under existing hardware condition was demonstrated, so some technological reserves for dynamic analysis on complicated equipments or systems in nuclear engineering are provided.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 76
Author(s):  
Ashraf Hefny ◽  
Mohamed Ezzat Al-Atroush ◽  
Mai Abualkhair ◽  
Mariam Juma Alnuaimi

The complexities and the economic computational infeasibility associated in some cases, with three-dimensional finite element models, has imposed a motive for many investigators to accept numerical modeling simplification solutions such as assuming two-dimensional (2D) plane strain conditions in simulation of several supported-deep excavation problems, especially for cases with a relatively high aspect ratio in plan dimensions. In this research, a two-dimensional finite element model was established to simulate the behavior of the supporting system of a large-scale deep excavation utilized in the construction of an underground metro station Rod El Farrag project (Egypt). The essential geotechnical engineering properties of soil layers were calculated using results of in-situ and laboratory tests and empirical correlations with SPT-N values. On the other hand, a three-dimensional finite element model was established with the same parameters adopted in the two-dimensional model. Sufficient sensitivity numerical analyses were performed to make the three-dimensional finite element model economically feasible. Results of the two-dimensional model were compared with those obtained from the field measurements and the three-dimensional numerical model. The comparison results showed that 3D high stiffening at the primary walls’ corners and also at the locations of cross walls has a significant effect on both the lateral wall deformations and the neighboring soil vertical settlement.


Author(s):  
V.V. LEONTYEV

The method for analyzing of stress-strain state characteristics of unloaded riveted joints performed with OST 1 11781-74 rivets has been developed using Coupled Euler-Lagrange finite element approach implemented in the CAD / CAE system Abaqus. A comparative analysis of the stress-strain state characteristics of the examined riveted joint’s finite element models using the Lagrangian and the Coupled Lagrangian-Eulerian finite element approaches has been conducted. A three- dimensional finite element model based on the CLE method has been proposed for further study of fatigue strength and durability of the loaded riveted joints.


2011 ◽  
Vol 201-203 ◽  
pp. 1500-1503
Author(s):  
Heng Li ◽  
Quan Kun Liu ◽  
Ling Yun Qian ◽  
Yu Han

Improving the straightness accuracy of bending workpieces becomes an urgent problem for the development of bending equipment with large size and high precision. In order to obtain the characteristics of slider deformation, a three-dimensional finite element model was developed according to the mechanic characteristics of large-scale press brake and obtained the small deformation using FEM (finite element method). The numerical results are in good agreement with the experimentation. Then based on the simulation results we design a large-scale mechanical crowning system through which the press brake could be automatically compensated in the bend direction by means of a CNC (Computer Numerical Control)-powered motor and could also be compensated for local parts by adjusting the side screw nuts manually. The system has been successfully applied in production and its accuracy was increased 33% compared with the traditional ones. It is proved that the present investigation can provide a technical support and reliable system for the improvement of accuracy of the press brakes.


2013 ◽  
Vol 788 ◽  
pp. 606-610
Author(s):  
Qing Xiang Ji ◽  
Xin Sheng Ge

Foundation pit excavation could be affected to some extent by surrounding different kinds of building materials, building structure, foundation form and load distribution, especially in intensive buildings. In this paper, based on the large-scale finite element software ANSYS, a three-dimensional finite element model is established to analyze the consequences of these complex and uncertain factors faced with by deep excavation projects and the conclusions of the excavation affected by different foundations form of adjacent buildings are arrived at.


2010 ◽  
Vol 163-167 ◽  
pp. 1897-1900
Author(s):  
Xin Lei Yang ◽  
Hai Liang Wang ◽  
Quan Chang Ren ◽  
Peng Dong

In this research, a CFT column connection with vertical plates is proposed, and studied through a finite element model. For this purpose, three-dimensional finite element models are constructed by a general purpose finite element code, ABAQUS. Comparing the results of the models indicated the effectiveness of the proposed vertical plate scheme in reducing story drift, increasing the shear strength of the panel zone.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document