Numerical Modeling of Planar Flow Casting Process

2006 ◽  
Vol 116-117 ◽  
pp. 106-109 ◽  
Author(s):  
Kee Hyeon Cho ◽  
Kee Ahn Lee ◽  
Moon Chul Kim ◽  
Joong Mook Yoon

This study sought to examine the effect of various process parameters on the thickness of the amorphous strip produced by Planar Flow Casting (PFC), which is used to solidify molten metals rapidly. The processes were simulated via fully coupled fluid flow, heat transfer, and solidification models. The temperature distribution and velocity profile of melt in the computational domain with given process parameters were investigated according to various melt inlet temperatures, size of gap between nozzle slots, rotating wheel, and ejection pressure. In general, stable shaping of ribbons was obtained given a heat transfer coefficient of 100 cal/cm2/sec/°C. Strip thickness was found to decrease with the pouring temperature of melt. The results evaluated based on the numerical model were verified based on experimentally measured data.

2006 ◽  
Vol 15-17 ◽  
pp. 18-23 ◽  
Author(s):  
Hai Tao Zhang ◽  
Hiromi Nagaum ◽  
Yu Bo Zuo ◽  
Jian Zhong Cui

A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.


2015 ◽  
Vol 1088 ◽  
pp. 153-158 ◽  
Author(s):  
An Gui Hou ◽  
Yi Min ◽  
Cheng Jun Liu ◽  
Mao Fa Jiang

A heat transfer and solidification model of slab continuous casting process was developed, and the nail-shooting experiments were carried out to verify and improve the prediction accuracy. The comparison between the simulation and the measurements results showed that, there exists difference between the model predicted liquid core length and the calculated liquid core length according to the measurement results of the solidification shell thickness. In the present study, the value of constant a in the heat transfer coefficient calculation formula was corrected through back-calculation, results showed that, the suitable value of a is 31.650, 33.468 and 35.126 when the casting speed is 0.8m·min-1, 0.9m·min-1 and 1.0m·min-1 respectively, which can meet the liquid core length of the measurement results. The developed model built a foundation for the application of dynamic secondary cooling, and dynamic soft reduction.


Sign in / Sign up

Export Citation Format

Share Document