Reactive Compatibilization in Nano-Silica Filled Polypropylene Composites

2007 ◽  
Vol 121-123 ◽  
pp. 1433-1436 ◽  
Author(s):  
Klaus Friedrich ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

Nano-sized silica was pre-grafted with poly(glycidyl methacrylate) (PGMA) by solution free-radical polymerization. When these grafted silica particles were melt compounded with polypropylene (PP), reactive compatibilization effect was perceived due to the chemical bonding between the PGMA and amine functionalized PP, which led to a significant increase of tensile strength and notch impact strength of PP at rather low filler content. Accordingly, compatibility of each kind of the functionalized PP with grafted SiO2 was evaluated through investigating the mechanical properties, crystallization behavior and rheological performance of the composites. The results show that the reactive compatibilization is capable of providing stronger interfacial adhesion.

2006 ◽  
Vol 312 ◽  
pp. 229-232 ◽  
Author(s):  
Klaus Friedrich ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang ◽  
Wen Hong Ruan

Nano-sized silica particles were pre-grafted with poly(glycidyl methacrylate) (PGMA) by solution free-radical polymerization. When these grafted silica nanoparticles were melt compounded with polypropylene (PP), reactive compatibilization effect was perceived due to the chemical bonding between the grafted PGMA and amine functionalized PP, which led to a significant increase of tensile strength and notch impact strength of PP at rather low filler content. Accordingly, compatibility of each kind of the functionalized PP with grafted SiO2 nanoparticles was evaluated through investigating the mechanical properties, crystallization behavior and rheological performance of the composites. The results show that the reactive compatibilization is capable of providing stronger interfacial adhesion.


2009 ◽  
Vol 007 (2) ◽  
pp. 158-164
Author(s):  
Hongjun ZHOU ◽  
Minzhi RONG ◽  
Mingqiu ZHANG ◽  
Wenhong RUAN

2006 ◽  
Vol 41 (17) ◽  
pp. 5767-5770 ◽  
Author(s):  
Hong Jun Zhou ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang ◽  
Klaus Friedrich

2011 ◽  
Vol 117-119 ◽  
pp. 1061-1066
Author(s):  
Wen Cai Xu ◽  
Dong Li Li ◽  
Ya Bo Fu ◽  
Ya Jun Wang

In this paper, the influence of nano-silica on adsorption behavior of solvent in polypropylene packaging is reported. A principle of reducing solvent residue in polypropylene packaging was explored through analyses of changes of crystallization behavior, polarity, and solubility parameters of nano-silica /polypropylene composites. The results showed that the value of solvent residue in modified polypropylene films was reduced about 50%. Therefore nano-silica modified polypropylene films with lower solvent adsorption are in accordance with food safety.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1181 ◽  
Author(s):  
Chunmei Zhang ◽  
Qiaofeng Lan ◽  
Tianliang Zhai ◽  
Shengqiang Nie ◽  
Jun Luo ◽  
...  

Lactide-Caprolactone copolymer (LACL) was added to a Polylactide/Poly(ε-caprolactone) (PLA/PCL) blend as a compatibilizer through solution mixing and the casting method. The melt crystallization behavior and crystalline morphology of PLA, PLA/PCL, and PLA/PCL/LACL were investigated using differential scanning calorimeter (DSC) and polarized optical microscopy (POM), respectively. The temperature of the shortest crystallization time for the samples was observed at 105 °C. The overall isothermal melt crystallization kinetics of the three samples were further studied using the Avrami theory. Neat PLA showed a higher half-time of crystallization than that of the PLA/PCL and PLA/PCL/LACL blends, whereas the half-time of crystallization of PLA/PCL and PLA/PCL/LACL showed no significant difference. The addition of PCL decreased the spherulite size of crystallized PLA, and the nuclei density in the PLA/PCL/LACL blend was much higher than that of the PLA and PLA/PCL samples, indicating that LACL had a compatibilization effect on the immiscible PLA/PCL blend, thereby promoting the nucleation of PLA. The spherulites in the PLA/PCL and PLA/PCL/LACL blend exhibited a smeared and rough morphology, which can be attributed to the fact that PCL molecules migrated to the PLA spherulitic surface during the crystallization of PLA.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


Sign in / Sign up

Export Citation Format

Share Document