Effect of Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

2007 ◽  
Vol 124-126 ◽  
pp. 1317-1320 ◽  
Author(s):  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

The static and dynamic compressive behaviors of open-cell aluminum alloy foams with virtually the same relative density of 0.4 were investigated. The foams have different cell sizes (0.5mm, 1.5mm, 2.5mm) but similar cell morphology and microstructure. The yield strength of these foams was characterized as a function of strain rate and cell morphology. The experimental results indicated that the mechanical responses of foams are sensitive to strain rate, and dependent of the cell size. The present results are compared in details with recent findings obtained from the aluminum foams.

2007 ◽  
Vol 124-126 ◽  
pp. 1417-1420
Author(s):  
Chen Li ◽  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

This paper presents a study of heat treatment on the quasi-static and dynamic compressive properties of the open cell aluminum alloy foams in as-fabricated (F), age-hardened (A) and T6-strengthened (T6) conditions. Although the strain rate and heat treatment of foams are different, all exhibit similar deformation behavior in the subsequent deformation. The yield stress of foams at different strain rates are improved by heat treatment, all exhibit some strain rate sensitivity. However, the densification strain of foams is not sensitive to heat treatment.


Author(s):  
Chen Li ◽  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

2005 ◽  
Vol 486-487 ◽  
pp. 472-475 ◽  
Author(s):  
Bo Young Hur ◽  
Bu Keoun Park ◽  
Sang Youl Kim ◽  
Hoon Bae

The uniaxial compressive test results of several aluminum foams are compared with aluminum alloy and ppi (pore per inch) of open cell foam. The compressive stress-strain curve of aluminum alloy foams exhibits universal three deformation regions: an initial linear elastic response, and then extended plateau region with a nearly constant flow stress, a final densification as collapsed cells are compacted together. The lower the foam densities are, the longer the plateau region is, but lower densities also imply lower yield stress.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


2020 ◽  
Vol 24 ◽  
pp. 101249
Author(s):  
Yoshihiko Hangai ◽  
Mizuki Ando ◽  
Masataka Ohashi ◽  
Kenji Amagai ◽  
Ryosuke Suzuki ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 905-910 ◽  
Author(s):  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

The compressive deformation behavior of open-cell aluminum foams with different densities and morphologies was assessed under quasi-static and dynamic loading conditions. High strain rate experiments were conducted using a split Hopkinson pressure bar technique at strain rates ranging from 500 to 1 2000 − s . The experimental results shown that the compressive stress-strain curves of aluminum foams also have the “ three regions” character appeared in general foam materials, namely elastic region, collapse region and densification regions. It is found that density is the primary variable characterizing the modulus and yield strength of foams and the cell appears to have a negligible effect on the strength of foams. It also is found that yield strength and energy absorption is almost insensitive to strain rate and deformation is spatially uniform for the open-celled aluminum foams, over a wide range of strain rates.


2002 ◽  
Vol 43 (10) ◽  
pp. 2548-2553 ◽  
Author(s):  
Hidetaka Kanahashi ◽  
Toshiji Mukai ◽  
T. G. Nieh ◽  
Tatsuhiko Aizawa ◽  
Kenji Higashi

Author(s):  
Jayaram R. Pothnis ◽  
Yernamma Perla ◽  
H. Arya ◽  
N. K. Naik

Investigations on the effect of strain rate on tensile properties of two materials, namely, aluminum alloy 7075 T651 and IS 2062 mild steel, are presented. Experimental studies were carried out on tensile split Hopkinson pressure bar (SHPB) apparatus in the strain rate range of 54–164/s. Uncertainty analysis for the experimental results is presented. Johnson–Cook material constitutive model was applied to predict the tensile yield strength of the tested materials at different strain rates. It is observed that the tensile yield strength is enhanced compared with that at quasi-static loading. During tensile SHPB testing of the specimens, it was observed that the peak force obtained from the strain gauge mounted on the transmitter bar is lower than the peak force obtained from the strain gauge mounted on the incident bar. An explanation to this is provided based on the increase in dislocation density and necking in the tested specimens during high strain rate loading and the consequent stress wave attenuation as it propagates within the specimen. The fracture behavior and effect of high strain rate testing on microstructure changes are examined. The peak force obtained based on strain gauge mounted on the transmitter bar is lower than the peak force obtained based on strain gauge mounted on the incident bar. There is an increase in tensile yield strength at high strain rate loading compared with that at quasi-static loading for both materials. The enhancement is more for IS 2062 mild steel than that for aluminum alloy 7075 T651. In the range of parameters considered, the strength enhancement factor was up to 1.3 for aluminum alloy 7075 T651 and it was up to 1.8 for IS 2062 mild steel. Generally, there was a good match between the experimental values and the Johnson–Cook model predictions.


Sign in / Sign up

Export Citation Format

Share Document