Study Replacement of Cement with Recycled Cement Powder and the Environmental Assessment

2016 ◽  
Vol 249 ◽  
pp. 136-141 ◽  
Author(s):  
Tereza Pavlů ◽  
Vladimír Kočí ◽  
Magdaléna Šefflová

This investigation is focused on possibility of partial cement replacement in concrete mixture and its environmental assessment. The cement in concrete mixture is replaced by recycled cement powder from modified construction and demolition (C&D) waste. Recycled cement powder were prepared in laboratory from C&D waste of high quality road concrete. The main goal of this investigation is optimize amount of recycled cement powder used as partial replacement of cement in concrete mixture according to mechanical, deformation and physical properties of concrete and environmental impact. The properties of the fine-aggregate concrete with partial replacement of cement by recycled cement powder were tested for this verification. The life cycle analysis was calculated for this optimization. The properties and environmental assessment of the fine-aggregate concrete with partial replacement of fine aggregate by fine recycled aggregate were examined for comparison.

2016 ◽  
Vol 827 ◽  
pp. 255-258 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová

This investigation was focused on possibility of use recycled cement powder originating from the construction and demolition concrete waste as partial replacement of cement in concrete mixture. The main goal of this paper is the study of the mechanical properties development of the fine-aggregate concrete with partial cement replacement at the age 7, 14 and 28 days. The compressive strength and dynamic modulus of elasticity were tested in time. The recycled cement powder from fine recycled concrete, which was used as partial replacement of cement, had the same grain size as cement. The concrete mixtures contained 95 %, 90 % and 85 % of cement and residue has been replaced by recycled cement powder. Mechanical properties were tested on cubic and prismatic specimens.


2018 ◽  
Vol 760 ◽  
pp. 193-198 ◽  
Author(s):  
Kristina Fořtová ◽  
Tereza Pavlů

This paper presents research results of recycled fine aggregate concrete testing. The main aim of this contribution is verification of properties of fine aggregate concrete with partial replacement of fine natural aggregate by recycled masonry aggregate originated from construction and demolition waste. The influence of partial replacement of natural sand to mechanical properties and freeze-thaw resistance is described. The compressive strength and flexural strength were tested at the age of 28 and 60 days and after 25, 50, 75 and 100 freeze-thaw cycles. Partial replacement of natural sand was 0, 25 and 50 % for all these tests. Prismatic specimens were examined.


2016 ◽  
Vol 825 ◽  
pp. 45-48 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová

This study deals with determination of the physical properties of fine-aggregate concrete with partial replacement of cement in concrete mixture. Cement was replaced by recycled cement powder originating from construction and demolition waste. The main goal of this study is evaluation of the basic physical properties of the fine-aggregate concrete with partial cement replacement by recycled concrete powder such as density, water absorption capacity and capillary water absorption. The fine recycled concrete which was used as partial replacement of cement had the same grain size as cement. The replacement rate was 0 %, 5 %, 10 % and 15 %. Physical properties were investigated by using cubic and prismatic specimens.


2016 ◽  
Vol 677 ◽  
pp. 292-297 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová ◽  
Vladimír Hujer

The main aim of this contribution is verification of properties of concrete with partial replacement of cement by recycled cement powder originating from waste concrete. The main topic of this article is the study of influence of partial replacement of cement by recycled cement powder (RCP) to the cement paste properties, workability of fresh concrete and strength development and dynamic modulus of elasticity of fine aggregate concrete with partial replacement of cement. The workability of fresh concrete were tested by flow table test. The compressive strength, tensile strength in bending and dynamic modulus of elasticity were tested at the age 7, 14, 28 and 90 days. Partial replacement of cement was 0, 5, 10 and 15 % for all these tests. Mechanical properties were investigated by using cubic and prismatic specimens. The determination of the initial setting time of cement paste were measured by automatic Vicat apparatus for replacement rate of cement 0, 5, 10, 15 and 25 %.


2018 ◽  
Vol 760 ◽  
pp. 176-183 ◽  
Author(s):  
Tereza Pavlů

The main aim of this contribution is comparison the properties of fine aggregate concrete with partial replacement of sand by fine recycled aggregate. The fine recycled aggregate originated from two different sources. The main topic of this article is the study of influence of the origin of FRA to fine aggregate concrete properties. The compressive strength, flexural strength and freeze-thaw resistance were tested. The mechanical properties and weight were examined after 28 and 60 days and after 25, 50, 75 and 100 cycles of freeze-thaw. Partial replacement of sand was 25 and 50 % for all these tests. The properties were investigated by using prismatic specimens.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Ivan Janotka ◽  
Pavel Martauz ◽  
Michal Bačuvčík

In addition to the known uses of natural clays, less publication attention has been paid to clays returned to the production process. Industrially recovered natural clays such as bricks, tiles, sanitary ceramics, ceramic roofing tiles, etc., are applicable in building materials based on concrete as an artificial recycled aggregate or as a pozzolanic type II addition. In this way, the building products with higher added value are obtained from the originally landfilled waste. This paper details the research process of introducing concrete with recycled brick waste (RBW) up to the application output. The emphasis is placed on using a RBW brash as a partial replacement for natural aggregates and evaluating an RBW powder as a type II addition for use in concrete. A set of the results for an RBW is reported by the following: (a) an artificial RBW fine aggregate meets the required standardized parameters for use in industrially made concrete, (b) a RBW powder is suitable for use in concrete as industrially made type II addition TERRAMENT showing the same pozzolanic reactivity as a well-known and broadly used pozzolan-fly ash, and (c) such an RBW as aggregate and as powder are, therefore, suitable for the production of industrially made TRITECH Eco-designed ready-mixed concrete.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


Sign in / Sign up

Export Citation Format

Share Document