scholarly journals Design of Concrete Made with Recycled Brick Waste and Its Environmental Performance

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Ivan Janotka ◽  
Pavel Martauz ◽  
Michal Bačuvčík

In addition to the known uses of natural clays, less publication attention has been paid to clays returned to the production process. Industrially recovered natural clays such as bricks, tiles, sanitary ceramics, ceramic roofing tiles, etc., are applicable in building materials based on concrete as an artificial recycled aggregate or as a pozzolanic type II addition. In this way, the building products with higher added value are obtained from the originally landfilled waste. This paper details the research process of introducing concrete with recycled brick waste (RBW) up to the application output. The emphasis is placed on using a RBW brash as a partial replacement for natural aggregates and evaluating an RBW powder as a type II addition for use in concrete. A set of the results for an RBW is reported by the following: (a) an artificial RBW fine aggregate meets the required standardized parameters for use in industrially made concrete, (b) a RBW powder is suitable for use in concrete as industrially made type II addition TERRAMENT showing the same pozzolanic reactivity as a well-known and broadly used pozzolan-fly ash, and (c) such an RBW as aggregate and as powder are, therefore, suitable for the production of industrially made TRITECH Eco-designed ready-mixed concrete.

2018 ◽  
Vol 760 ◽  
pp. 193-198 ◽  
Author(s):  
Kristina Fořtová ◽  
Tereza Pavlů

This paper presents research results of recycled fine aggregate concrete testing. The main aim of this contribution is verification of properties of fine aggregate concrete with partial replacement of fine natural aggregate by recycled masonry aggregate originated from construction and demolition waste. The influence of partial replacement of natural sand to mechanical properties and freeze-thaw resistance is described. The compressive strength and flexural strength were tested at the age of 28 and 60 days and after 25, 50, 75 and 100 freeze-thaw cycles. Partial replacement of natural sand was 0, 25 and 50 % for all these tests. Prismatic specimens were examined.


2016 ◽  
Vol 249 ◽  
pp. 136-141 ◽  
Author(s):  
Tereza Pavlů ◽  
Vladimír Kočí ◽  
Magdaléna Šefflová

This investigation is focused on possibility of partial cement replacement in concrete mixture and its environmental assessment. The cement in concrete mixture is replaced by recycled cement powder from modified construction and demolition (C&D) waste. Recycled cement powder were prepared in laboratory from C&D waste of high quality road concrete. The main goal of this investigation is optimize amount of recycled cement powder used as partial replacement of cement in concrete mixture according to mechanical, deformation and physical properties of concrete and environmental impact. The properties of the fine-aggregate concrete with partial replacement of cement by recycled cement powder were tested for this verification. The life cycle analysis was calculated for this optimization. The properties and environmental assessment of the fine-aggregate concrete with partial replacement of fine aggregate by fine recycled aggregate were examined for comparison.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Aaliya Navaz ◽  
Anju Paul

Pervious concrete is a mixture of cement, coarse aggregate mixed with water. The absence of fine aggregate helps increase the voids and water can pass through these gaps and reaches to ground level. The use of recycled coarse aggregates from construction and demolition is a sustainable solution with many environmental benefits and also reduces the number of virgin aggregates to be created, hence reducing the extraction of natural resources. This paper reviews the research developments of pervious concrete by replacing natural aggregates with different percentages of recycled coarse aggregate. The papers under consideration of review have conducted to identify various properties of pervious concrete such as mechanical and hydrological properties. Keywords— pervious concrete, compressive strength, permeability


Electrical and electronic waste (E-waste) has become a great matter of concern all around the world. Due to the fast growth in kinescope technology, Cathode Ray Tubes (CRTs) are being replaced by lighter and thinner panels with flat displays, namely – Light Emitting Diodes (LEDs), Plasma Display Panels (PDPs) and Liquid Crystal Displays (LCDs). The environmental hazards caused by CRTs waste generation have become an extensive dilemma around the globe. Lead is contained in sufficient amounts in the waste CRTs, which causes serious hazards to human health and the environment. The increasing demand for concrete and natural resources due to swift urbanization has made it crucial to replace the natural aggregates in concrete either as a partial replacement or total replacement, without affecting the concrete performance. CRT waste glasses are abundant in silica, have low water absorption property and adequate intrinsic strength. These characteristics of CRT waste glass make it apt for usage as pozzolan or sand in construction materials. They can be partially or totally replaced for natural sand as fine aggregate in concrete. This review work extends an in-depth summary of literature detailing the reuse of CRT glass waste as a fine aggregate replacement in concrete. The properties such as water performance, thermal property, strength and durability of CRT glass waste-based concrete and their method of manufacturing have also been studied in this paper. Furthermore, a comparative performance analysis of CRT glass waste concrete with other E-waste incorporated concrete has also been included in this paper. The current work shall contribute to enhancement towards sustainability and economic development of CRT glass waste incorporated concrete in the construction industry. Thus, the issues related to CRT glass waste such as contamination of soil, environment and water bodies, health issues caused to living beings and simultaneously, the degradation of natural restricted aggregate resources could be reduced considerably by several folds.


Now a days increase in population increases the demand of concrete for construction purpose and Aggregates are the important constituents in concrete.Re-use of demoliation waste avoids the problem of waste disposal and is also helpful in reducing the gap between demand and supply of fresh aggregates. This research deals with partial replacement of natural coarse aggregates (NCA) with recycled coarse aggregates (RCA) of age group 30 years and 35 years in different proportions like 20%, 30%, 40% . For this, M20 grade of concrete is adopted. Curing of specimens were done for 7days and 28 days to attain the maximum strengths. Partial replacement of fine aggregate with Granite powder at 5%, 10%, 15% were done to reduce the waste percentage as well to gain more strength. After casting the specimens of RCA with Granite powder replacement, curing was done and the specimens were tested for compressive and tensile strengths. Obtained results of compressive and tensile strengths of RCA concrete mix were compared with conventional concrete. In this direction, an experimental investigation of compressive and tensile strength was undertaken to use RCA as a partial replacement in concrete. It was observed that the concrete with recycled aggregates of 30years and 35years age group achieved maximum compressive strength of 29.03 N/mm2 , 28.96 N/mm2 and tensile strength of 11.91 N/mm2 , 10.34 N/mm2 were obtained at 40%replacement of RCA respectively. It is found that the compressive strength and Split tensile strength of RAC with copper slag was increased 8.20% and 2.90% when compared with the RAC.


2016 ◽  
Vol 66 (324) ◽  
pp. 101 ◽  
Author(s):  
L. Coppola ◽  
P. Kara ◽  
S. Lorenzi

The paper focuses on the reuse of crushed asphalt (GA) as a partial replacement (up to 20%) of natural aggregates for concrete manufacture. Addition of GA aggregates produced a positive effect on workability loss. The GA mixes, however, showed a significant tendency to bleed and segregate at the highest replacement percentage applied. GA led to a decrease of compressive strength in concrete (with respect to that of the reference concrete) up to 50% due to the weakness of the cement paste / recycled aggregate interface. To compensate for this negative effect, a reduction of w/c for the GA concretes was necessary. A decrease of w/c allowed the GA concretes to show drying shrinkage values substantially similar to those of reference concrete with the same cement factor. The experimental results confirmed the possibility of partial substitution (max. 15%) of natural aggregates with crushed asphalt for making concrete.


2019 ◽  
Vol 8 (2) ◽  
pp. 5712-5718 ◽  

Concrete is currently the world's biggest consumer product that uses natural resources such as sand, crushed stone, and water. Research is under way today to decrease consumption of these materials, due to the depletion of these natural resources for concretion. The fast building growth in India led to a lack of standard building materials. The amount of concrete used and the accessibility of raw material in a developed country such as India are much lower. Ceramics produce wastes inevitably in the ceramic industry, regardless of improved processes; around 15%-30% of production is waste output. The ceramic industry dumps waste in all surrounding storage or empty regions close to the facility, although reported locations are labelled for discarding. The pollution of the dust and the occupation of a broad area of soil is caused by serious environmental contamination especially after the powder is dry. Ceramic dust is the most important waste from the ceramic industry. This paper investigates concrete strength features through fractional substitution of fine aggregates with ceramic powder. The fine aggregate was partly combined with ceramic powders in the current experimental study for M25 concrete grade. The tests were performed with 10 percent, 30 percent, 40 percent, 50 percent substitution of fine aggregates with ceramic powder by weight and 28 days of strength testing to evaluate the mechanical characteristics i.e.; compression, tension, and flexural behavior. The optimum proportion of ceramic powder addition is evaluated in view of the mechanical requirements of concrete


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7420
Author(s):  
Kalyana Chakravarthy Polichetty Raja ◽  
Ilango Thaniarasu ◽  
Mohamed Abdelghany Elkotb ◽  
Khalid Ansari ◽  
C Ahamed Saleel

The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.


2018 ◽  
Vol 760 ◽  
pp. 176-183 ◽  
Author(s):  
Tereza Pavlů

The main aim of this contribution is comparison the properties of fine aggregate concrete with partial replacement of sand by fine recycled aggregate. The fine recycled aggregate originated from two different sources. The main topic of this article is the study of influence of the origin of FRA to fine aggregate concrete properties. The compressive strength, flexural strength and freeze-thaw resistance were tested. The mechanical properties and weight were examined after 28 and 60 days and after 25, 50, 75 and 100 cycles of freeze-thaw. Partial replacement of sand was 25 and 50 % for all these tests. The properties were investigated by using prismatic specimens.


Sign in / Sign up

Export Citation Format

Share Document