Influence of Technological Parameters of Direct Laser Deposition Process on the Structure and Properties of Deposited Products from Alloy Ti-6Al-4V

2018 ◽  
Vol 284 ◽  
pp. 306-311 ◽  
Author(s):  
M.O. Gushchina ◽  
Olga G. Klimova-Korsmik ◽  
Gleb A. Turichin ◽  
S.A. Shalnova

The technology of direct laser deposition is the most promising for using in various industries. One of the most interesting areas for using this technology is an aviation industry. Due to their unique properties, titanium alloys are widely used in the aircraft industry for gas turbine engine components. In this paper, the effect of DLD process parameters on defect formation and structure is considered. The influence of energy density on the mechanical properties of parts is determined.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1550
Author(s):  
Artur Vildanov ◽  
Konstantin Babkin ◽  
Ruslan Mendagaliyev ◽  
Andrey Arkhipov ◽  
Gleb Turichin

Direct laser deposition technology is used for the manufacture of large-size products with complex geometries. As a rule, trial samples with small dimensions are made to determine the deposition parameters. In order for the resulting products to have the required performance characteristics, it is necessary to minimize the number of internal macrodefects. Non-fusion between the tracks are defects that depend on the technological mode (power, speed, track width, etc.). In this work, studies have been carried out to determine the power level at which non-fusion is formed, dwell time between the tracks on the model samples. This paper considers the issue of transferring the technological parameters of direct laser deposition from model samples to a large-sized part, and describes the procedure for making model samples.


Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


Author(s):  
S Marimuthu ◽  
D Clark ◽  
J Allen ◽  
AM Kamara ◽  
P Mativenga ◽  
...  

The shape complexity of aerospace components is continuously increasing, which encourages researchers to further refine their manufacturing processes. Among such processes, blown powder direct laser deposition process is becoming an economical and energy efficient alternative to the conventional machining process. However, depending on their magnitudes, the distortion and residual stress generated during direct laser deposition process can affect the performance and geometric tolerances of manufactured components. This article reports an investigation carried out using the finite element analysis method to predict the distortion generated in an aero-engine component produced by the direct laser deposition process. The computation of the temperature induced during the direct laser deposition process and the corresponding distortion on the component was accomplished through a three-dimensional thermo-structural finite element analysis model. The model was validated against measured distortion values of the real component produced by direct laser deposition process using a Trumpf DMD505 CO2 laser. Various direct laser deposition fill patterns (orientation strategies/tool movement) were investigated in order to identify the best parameters that will result in minimum distortion.


2020 ◽  
Vol 299 ◽  
pp. 345-350 ◽  
Author(s):  
G.G. Zadykyan ◽  
R.S. Korsmik ◽  
R.V. Mendagaliev ◽  
Gleb A. Turichin

The technology of direct laser deposition is the most promising for use in various industries. One of the most interesting industries for using this technology is shipbuilding. Due to its unique properties, cold-resistant steels are widely used in shipbuilding for brackets of mushroom propellers, stems, and also structures for work on the Arctic shelf. In this paper, the studies of the influence of technological parameters on the formation of the geometry and properties of products are represented. The technological parameters of the process of direct laser deposition parts from steel 0909CrNi2MoCu are determined.


Sign in / Sign up

Export Citation Format

Share Document