Possible Bose-Einstein Condensation of Polygonal Clusters in 2D-Materials

2019 ◽  
Vol 297 ◽  
pp. 204-208
Author(s):  
Abid Boudiar

This study investigates the possibility of Bose-Einstein condensation (BEC) in 2D-nanoclusters. A ground state equilibrium structure involves the single phonon exchange approximation. At critical temperature, the specific heat, entropy, and free energy of the system can be determined. The results support the existence of BEC in nanoclusters, and they lead to predictions of the behaviour of 2Dmaterials at low temperatures.

2017 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
M. Serhan

In this work I solve the Gross-Pitaevskii equation describing an atomic gas confined in an isotropic harmonic trap by introducing a variational wavefunction of Gaussian type. The chemical potential of the system is calculated and the solutions are discussed in the weakly and strongly interacting regimes. For the attractive system with negative scattering length the maximum number of atoms that can be put in the condensate without collapse begins is calculated.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3499-3504 ◽  
Author(s):  
JiXin Dai ◽  
Wen Tao ◽  
Peiherng Hor ◽  
Dai XianXi

A new possible mechanism is suggested based on the Wigner crystal and Bose–Einstein condensation. Our previous studies on the singular states that Loudon's singular ground state is rejected by the orthogonality criteria. It is shown that 2D Wigner crystal can exist and to be a possible mechanism for HTS.


2005 ◽  
Vol 19 (21) ◽  
pp. 1011-1034
Author(s):  
FUXIANG HAN ◽  
ZHIRU REN ◽  
YUN'E GAO

We propose a model that includes itinerant and localized states to study Bose–Einstein condensation of ultracold atoms in optical lattices (Bose–Anderson model). It is found that the original itinerant and localized states intermix to give rise to a new energy band structure with two quasiparticle energy bands. We have computed the critical temperature Tc of the Bose–Einstein condensation of the quasiparticles in the Bose–Anderson model using our newly developed numerical algorithm and found that Tc increases as na3 (the number density times the lattice constant cubed) increases according to the power law Tc≈18.93(na3)0.59 nK for na3<0.125 and according to the linear relation Tc≈8.75+10.53na3 nK for 1.25<na3<12.5 for the given model parameters. With the self-consistent equations for the condensation fractions obtained within the Bogoliubov mean-field approximation, the effects of the on-site repulsion U on the quasiparticle condensation are investigated. We have found that, for values up to several times the zeroth-order critical temperature, U enhances the zeroth-order condensation fraction at intermediate temperatures and effectively raises the critical temperature, while it slightly suppresses the zeroth-order condensation fraction at very low temperatures.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850194 ◽  
Author(s):  
Abhishek Das

In this paper, we endeavor to show that the phenomenon of Bose–Einstein condensation can take place at discrete temperatures lower than the known critical temperature value.


2003 ◽  
Vol 17 (18n20) ◽  
pp. 3304-3309
Author(s):  
V. C. Aguilera-Navarro ◽  
M. Fortes ◽  
M. de Llano

A Bethe–Salpeter treatment of Cooper pairs (CPs) based on an ideal Fermi gas (IFG) "sea" produces unstable CPs if holes are not ignored. Stable CPs with damping emerge when the BCS ground state replaces the IFG, and are positive-energy, finite-lifetime resonances for nonzero center-of-mass momentum with a linear dispersion leading term. Bose–Einstein condensation of such pairs may thus occur in exactly two dimensions as it cannot with quadratic dispersion.


Sign in / Sign up

Export Citation Format

Share Document