Elastic Properties of Vanadium Doped Silica-Borotellurite Glasses

2020 ◽  
Vol 307 ◽  
pp. 321-326
Author(s):  
Nurhayati Mohd Nor ◽  
Halimah Mohamed Kamari ◽  
Amirah Abdul Latif ◽  
Nurisya Mohd Shah

Silica borotellurite glasses doped with different molar fraction of V2O5 have been prepared by melt quenching technique. The elastic properties of {[(TeO2)0.7 (B2O3)0.3]0.8(SiO2)0.2}(1-x)(V2O5)x glasses are investigated using ultrasonic pulse echo measurements and their elastic properties have been characterized at room temperature. The density of the glasses was measured by Archimedes method using distilled water as buoyant liquid. The ultrasonic wave velocities (longitudinal, vl and shear, vS) were recorded at 5 MHz. Elastic moduli, Poisson’s ratio (σ) and microhardness (H) were then calculated to obtain quantitative analysis regarding the structure of these glasses. The results obtained showed that the doping of V2O5 with silica borotellurite enhances the strengthening of glass network. Glass with 0.03 molar fraction of V205 shows low ultrasonic velocities and low elastic moduli. The variation of elastic properties is related to the change of structure in the vanadium doped silica-borotellurite glass system.


Author(s):  
Bianca Reis Moya ◽  
Idalci Cruvinel dos Reis ◽  
Victor Ciro Solano Reynoso ◽  
Mariana da Silva Barros ◽  
Kamila Ruthielle Silva Gomes

ABSTRACT: The PbO-SrO-B2O3 glass system with the of molar ratio of R (= PbO/B2O3) were prepared by fusion method. The elastic properties have been investigated using longitudinal and transversal ultrasonic wave velocity. Measurements were performed at room temperature and using pulse-echo technique at frequency of 5 MHz. The results indicate that, when increasing R value, the glass network stability decreases. This decrease indicates, of the increase the number of borate structures with non bridging oxygen (NBOs) at the expense of the decrease of borate units with tetrahedral structures. This feature may lead to the more open glass network structures and lower stiffness of the samples studied.



2006 ◽  
Vol 74 (18) ◽  
Author(s):  
O. Svitelskiy ◽  
A. Suslov ◽  
D. L. Schlagel ◽  
T. A. Lograsso ◽  
K. A. Gschneidner ◽  
...  


1999 ◽  
Vol 13 (27) ◽  
pp. 991-998 ◽  
Author(s):  
Y. PURUSHOTHAM ◽  
P. VENUGOPAL REDDY

In the present work, we investigate the elastic behavior of monovalent and divalent doped Sr–Zn W-type hexagonal ferrites at room temperature by measuring their longitudinal and shear wave velocities using a pulse transmission technique. The values of Young (E) and rigidity (G) moduli have been corrected to the theoretical density. The zero porosity values of both the elastic moduli are found to increase with increasing dopant concentration. Further, a linear relationship between the Debye temperature and the average sound velocity has also been observed and the behavior is explained qualitatively.



2008 ◽  
Vol 23 (6) ◽  
pp. 1517-1521 ◽  
Author(s):  
M. Radovic ◽  
A. Ganguly ◽  
M.W. Barsoum

Herein we compare the lattice parameters, room temperature shear and Young’s moduli, and phonon thermal conductivities of Ti2AlC0.5N0.5 and Ti3Al(C0.5, N0.5)2 solid solutions with those of their end members, namely Ti2AlC, Ti2AlN, Ti3AlC2, and Ti4AlN2.9. In general, the replacement of C by N decreases the unit cell volumes and increases the elastic moduli and phonon thermal conductivities. The increase in the latter two properties, however, is sensitive to the concentrations of defects, most likely vacancies on one or more of the sublattices.



2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Chee Sun Lee ◽  
Khamirul Amin Matori ◽  
Sidek Hj. Ab Aziz ◽  
Halimah Mohamed Kamari ◽  
Ismayadi Ismail ◽  
...  

Zinc silicate (ZnO–SiO2) systems were fabricated using zinc oxide (ZnO) and white rice husk ash (WRHA) with compositions of (ZnO)x(WRHA)1−x (x = 0.55, 0.60, 0.65, and 0.70 wt.%) was symbolized by S1, S2, S3, and S4, respectively. The ZnO–SiO2 samples were fabricated by applying the melt-quench method and the physical and elastic properties of the samples were investigated. Physical properties used in this study are density and molar volume while the theoretical elastic moduli of the samples produced were obtained using direct calculation of theoretical model compared with the experimental elastic moduli obtained by acquiring ultrasonic velocities using ultrasonic pulse-echo technique. Values of experimental elastic moduli including longitudinal modulus (L), shear modulus (S), Young’s modulus (E), bulk modulus (K), and Poisson’s ratio (σ) were compared with theoretical model calculated using Rocherulle’s model. All the configurations of the elastic moduli obtained experimentally match very well with the configuration from Rocherulle’s model but Poisson’s ratio obtained experimentally differs from the values of Poisson’s ratio obtained through Rocherulle’s model.



1987 ◽  
Vol 110 ◽  
Author(s):  
J. Lawrence Katz ◽  
H. S. Yoon ◽  
A. Meunier ◽  
P. Christel

AbstractWe have been involved in using several ultrasonic wave propagation techniques to study the relationship between the structure and the elastic properties of bone, both normal and pathological. Pulse through ultrasonic techniques have been used to measure the ultrasonic velocities in human, normal, osteoporotic and osteopetrotic femoral bones in vitro at 5 MHz and room temperature. An ultrasonic right-angle reflector technique has also been used on the same specimens at room temperature and 15 MHz (the third harmonic of a 5 MHz immersion type transducer). In addition, microhardness measurements have been made on the same bones from which the specimens for ultrasonic measurements were obtained.



Author(s):  
Amin Abd El-Moneim ◽  
Hassan Y. Alfifi

In this article, we have continued our recent work(30,42) on the prediction of elastic properties in alkali borovanadate glasses. Changes in the elastic moduli and Poisson’s ratio due to the substitution of V2O5 by Na2O in the ternary alkali Na2O–B2O3–V2O5 glasses have been analysed and predicted on the basis of the theories and approaches that existing in the field. Both the packing density and dissociation energy per unit volume of the glass were evaluated in terms of the basic structural units that constitute the glass network. In addition to this, the theoretical values of elastic moduli and Poisson’s ratio were calculated from the Makishima–Mackenzie’s model and compared with the corresponding experimental values. The results revealed that the concentrations of the basic structural units BO3, BO4, VO5 and VO4 play a dominant role in correcting the anomalous behaviour between experimental elastic moduli and calculated dissociation energy per unit volume. An excellent agreement between the theoretical and experimental elastic moduli was achieved for majority of the samples. The correlation between bulk modulus and the ratio between packing density and mean atomic volume has also been achieved on the basis of Abd El-Moneim and Alfifi’s approaches.



2006 ◽  
Vol 20 (14) ◽  
pp. 843-847 ◽  
Author(s):  
B. N. DOLE ◽  
Y. PURUSHOTHAM ◽  
P. VENUGOPAL REDDY ◽  
S. S. SHAH

The longitudinal (Vl) and shear (Vs) wave velocities of Praseodymium substituted YB 2 Cu 3 O 7-δ high temperature superconductors were determined at room temperature by the pulse transmission technique. The values of Young's (E), rigidity (n) and bulk (k) moduli have been corrected to zero porosity. The zero porous corrected values of the elastic moduli are found to increase with increasing Praseodymium concentration. A linear relationship between the Debye temperature (θD) and average sound velocity (Vm) has also been observed and the behavior is explained qualitatively.



Warta Geologi ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 1-8
Author(s):  
John K. Raj

The main Beris Dam is founded on a sequence of thick bedded conglomerates and pebbly to fine grained sandstones with minor mudstone mapped as the Semanggol Formation of Triassic age. Ultrasonic pulse measurements show velocities of compressional and shear waves through the sandstones to increase with decreasing grain size; the pebbly sandstone with velocities of 2.210, and 5.171, km/s, and the coarse grained sandstone with velocities of 2.477, and 5.612, km/s, respectively. The medium grained sandstones have compressional and shear wave velocities of 2.457, and 5.793, km/s and the fine grained sandstones, velocities of 2.572, and 5.867 km/s, respectively. Dynamic elastic constants computed from the ultrasonic velocities also increase in values with decreasing grain size; Poisson’s ratio varying from 0.36 to 0.39, the modulus of elasticity from 35.076 to 48.210 GPa, the bulk modulus from 52.260 to 67.362 GPa and the modulus of rigidity from 12.637 to 17.468 GPa. Increasing velocities and elastic constants with decreasing grain size are considered to result from a denser arrangement of constituent grains as shown by increasing dry unit weights. Comparison with the results of an unconfined compression test on a fine grained sandstone indicate that the ultrasonic elastic constants are good approximations of static elastic constants.



2005 ◽  
Vol 46 (6) ◽  
pp. 1271-1273 ◽  
Author(s):  
Hiroyuki Tanaka ◽  
Lang Feng Qun ◽  
Osamu Munekata ◽  
Toshihiko Taguchi ◽  
Toshio Narita


Sign in / Sign up

Export Citation Format

Share Document