Verification of Durability Properties of Alkali-Activated Materials Based on Blast Furnace Slag with Fly Ash

2020 ◽  
Vol 309 ◽  
pp. 93-97
Author(s):  
Lukáš Procházka ◽  
Jana Boháčová

The paper deals with the possibility of using fly ash, including fly ash after denitrification by SNCR method, from the Třebovice power plant as an admixture to mixtures based on alkali-activated blast furnace slag in order to improve selected physical, mechanical and durability properties.

2015 ◽  
Vol 41 (1) ◽  
pp. 1421-1435 ◽  
Author(s):  
N. Marjanović ◽  
M. Komljenović ◽  
Z. Baščarević ◽  
V. Nikolić ◽  
R. Petrović

2017 ◽  
Vol 157 ◽  
pp. 737-747 ◽  
Author(s):  
N. Džunuzović ◽  
M. Komljenović ◽  
V. Nikolić ◽  
T. Ivanović

Materials ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 533 ◽  
Author(s):  
Jan Koplík ◽  
Lukáš Kalina ◽  
Jiří Másilko ◽  
František Šoukal

2016 ◽  
Vol 851 ◽  
pp. 141-146
Author(s):  
Jan Koplík ◽  
Miroslava Smolková ◽  
Jakub Tkacz

The ability of alkali-activated materials (AAMs) to fix and immobilize heavy metals was investigated. Two raw materials were used to prepare alkali-activated matrices – high-temperature fly ash and blast furnace slag (BFS). NaOH served as an alkaline activator. Two heavy metals (Mn, Ni) were added in different amounts to find out the influence of dosage of heavy metal on the mechanical properties of the matrices and the leachability. Leachability was measured as concentration of heavy metals in leachates (ČSN EN 12457-4) by inductively coupled plasma/optical emission spectrometry (ICP/OES). Structure of prepared matrices was characterized by scanning electron microscopy (SEM). Increasing of addition of heavy metals led to decrease of mechanical properties of matrices. The leaching tests showed, that both matrices can immobilize Mn and Ni in dosages of 0.1 – 2,5%. Higher dosages caused deterioration of the matrices and increased the leachability. After alkali activation both heavy metals were transformed into the form of insoluble salts.


2018 ◽  
Vol 761 ◽  
pp. 15-18 ◽  
Author(s):  
Jan Koplík ◽  
Tomáš Solný ◽  
Lukáš Kalina ◽  
Jiří Másilko

It is well known, that alkali-activated materials (AAMs) are suitable for immobilization of heavy metals and other hazardous materials. This study is focused on the characterization of inhibition of three metals – Sr2+, Bi3+and Zn2+in alkali-activated matrices. Two type of matrices were prepared – alkali-activated blast furnace slag (BFS) and alkali-activated fly ash (FA). Sodium water glass was used as alkaline activator. The ability of these matrices to fix the metals were proved by leaching tests. Compressive strength was measured to characterize mechanical properties of the matrices. Scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to examine distribution and chemical state of metals within the matrices. The observed metals mainly formed the insoluble compounds after alkali activation.


Sign in / Sign up

Export Citation Format

Share Document