Surface Observation of Induction-Heated 13Cr-2Ni-2Mo Stainless Steel after Interrupted Fatigue Testing under Rolling Contact Stress in Water

2021 ◽  
Vol 315 ◽  
pp. 72-76
Author(s):  
Koshiro Mizobe ◽  
Takahiro Matsueda ◽  
Gakuto Shinohara ◽  
Takuya Shibukawa ◽  
Katsuyuki Kida

In order to investigate the wear behavior of induction-heated 13Cr-2Ni-2Mo stainless steel, we performed the rolling contact fatigue (RCF) tests in water. We interrupted the RCF test at each 1.0×105 cycles and measure the wear loss and observed the contact surface. After the RCF tests, we found the oxygen concentration area in the contact area.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4678
Author(s):  
Jiapeng Liu ◽  
Yingqi Li ◽  
Yinhua Zhang ◽  
Yue Hu ◽  
Lubing Shi ◽  
...  

This study aims to deeply understand the effect of contact stress and slip ratio on wear performances of bainitic rail steels. The results showed that the wear loss increased as the contact stress and slip ratio increased. Based on the surface damage morphology and microstructural analyses, it revealed that the rolling contact fatigue wear mechanism played a significant role under the low slip ratio, but the dominant wear mechanism transferred to the abrasive wear at the high slip ratio. Meanwhile, the bainitic steel specifically presented worse wear resistance under the abrasive wear mode. Compared with the influence of a slip ratio, the increase in contact stress led to severer plastic flows and contributed to the propagation of cracks. In addition, the contact stress and slip ratio had the opposite effect on the friction coefficient, that is, the friction coefficient of bainitic steels behaved the inverse proportion with the contact stress, but positive proportion with the slip ratio. At last, the increase in slip ratio had more significant effect on the reduction of retained austenite (RA) than the enlargement of contact stress due to the fact that the RA would probably be removed before the martensitic transformation occurred under the abrasive wear mechanism.



1983 ◽  
Vol 27 ◽  
Author(s):  
F. M. Kustas ◽  
M. S. Misra ◽  
P. Sioshansi

ABSTRACTCylindrical 440C stainless steel specimens implanted with N and Ti were examined for their fatigue resistance and wear behavior by rolling contact fatigue (RCF) testing. The results obtained from RCF testing showed a 40% increase in the B-10 fatigue lifetime for N implanted and a 17% increase for Ti implanted 440C specimens compared to baseline, unimplanted 440C. Quantitative surface analysis by Auger Electron Spectroscopy (AES) was performed to determine the effects of process parameter optimization and ion beam masking on the elemental concentration profiles.



2012 ◽  
Vol 566 ◽  
pp. 654-659
Author(s):  
Takashi Honda ◽  
Katsuyuki Kida ◽  
Edson Costa Santos ◽  
Takuya Shibukawa

In the present work, rolling contact fatigue (RCF) tests in water were performed on AISI 440C stainless steels under different loading. Each test was interrupted at 3.6×104, 7.2×104, 1.44×105, 2.16×105, 2.88×105 and 2.88×105 rotating cycles and the wear track at different stages was observed by using a 3D laser confocal microscope. The wear loss at 2100 N was a significantly higher compared to 500 N or 1000 N. The contact surface roughness in samples tested at 2100 N increased during the rolling contact and severe adhesion wear was present at the entire surface. In case of 500 and 1000 N tests, the surface roughness remained low with mild adhesion wear occurring. It is concluded that adhesion force levels are higher under high load rolling contact. They greatly influence the surface conditions and cause high wear loss.





Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.



Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 911
Author(s):  
Qiang Wu ◽  
Tao Qin ◽  
Mingxue Shen ◽  
Kangjie Rong ◽  
Guangyao Xiong ◽  
...  

The influence of surface gas nitriding on wheel/rail rolling contact fatigue and wear behavior of CL60 wheel was studied on a new rolling contact fatigue/wear tester (JD-DRCF/M). The failure mechanisms of the wheel/rail surface after the gas nitriding and without gas nitriding on the wheel surface were compared and analyzed. The results show that the wheel with gas nitriding could form a dense and hard white bright layer which was approximately 25 μm thick and a diffusion layer which was approximately 70 μm thick on the wheel surface. Thus, the gas nitriding on the railway wheel not only significantly improved the wear resistance on the surface of the wheel, but also effectively reduced the wear of the rail; the results show that the material loss reduced by 58.05% and 10.77%, respectively. After the wheel surface was subjected to gas nitriding, the adhesive coefficient between the wheel/rail was reduced by 11.7% in dry conditions, and was reduced by 18.4% in water media, but even so, the wheel with gas nitriding still could keep a satisfactory adhesive coefficient between the wheel/rail systems, which can prevent the occurrence of phenomena such as wheel-slip. In short, the gas nitriding on the wheel surface can effectively reduce the wear, and improve the rolling contact fatigue resistance of the wheel/rail system. This study enlarges the application field of gas nitriding and provides a new method for the surface protection of railway wheels in heavy-duty transportation.



Author(s):  
R. Balcombe ◽  
M. T. Fowell ◽  
A. V. Olver ◽  
D. Dini

In this paper we present a coupled method for modelling fluid-solid interaction within a crack generated in rolling contact fatigue (RCF) in the presence of lubrication. The technique describes the fluid flow in the contact area and within the crack and explores how this affects the elastic deformation of the solid while the moving load traverses the cracked region. It is argued that this approach sheds light on the instantaneous response of the system, therefore providing a more physically-accurate description of the phenomenon under investigation.





Sign in / Sign up

Export Citation Format

Share Document