Extending High Value Components Performances with Additive Manufacturing: Application to Naval Applications

2021 ◽  
Vol 319 ◽  
pp. 58-62
Author(s):  
Matthieu Rauch ◽  
Gatien Pechet ◽  
Jean Yves Hascoet ◽  
Guillaume Ruckert

Additive Manufacturing (AM), consists of depositing material in successive layers to obtain the desired part. The parts produced by AM can thus adopt geometries inaccessible by conventional manufacturing means, for example hollow or lattice structures which considerably reduce their weight while keeping or even improving their mechanical properties. Among the many existing processes, Wire Arc Additive Manufacturing (WAAM) is particularly well suited to the manufacture of large metallic parts. It is characterized by a supply of heat in the form of an electric arc (produced by a welding generator) and a supply of material in the form of wire. This paper will discuss the impact of additive manufacturing to enhance the performances of high value components, based on naval application: the manufacturing of a hollow propeller blade demonstrator of 1.5 m high realized in the laboratory.

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1442
Author(s):  
Guillaume Meyer ◽  
Florian Brenne ◽  
Thomas Niendorf ◽  
Christian Mittelstedt

Thin-walled and cellular structures are characterised by superior lightweight potential due to their advantageous stiffness to weight ratio. They find particular interest in the field of additive manufacturing due to robust and reproducible manufacturability. However, the mechanical performance of such structures strongly depends on the manufacturing process and resultant geometrical imperfections such as porosity, deviations in strut thickness or surface roughness, for which an understanding of their influence is crucially needed. So far, many authors conducted empirical investigations, while analytical methods are rarely applied. In order to obtain efficient design rules considering both mechanical properties and process induced characteristics, analytical descriptions are desirable though. Available analytical models for the determination of effective properties are mostly based on the simple advancement of beam theories, mostly ignoring manufacturing characteristics that, however, strongly influence the mechanical properties of additive manufactured thin-walled structures. One example is the miniaturisation effect, a microstructural effect that has been identified as one of the main drivers of the effective elasto-plastic properties of lightweight structures processed by additive manufacturing. The current work highlights the need to quantify further microstructural effects and to encourage combining them into mesostructural approaches in order to assess macrostructural effective properties. This multi-scale analysis of lattice structures is performed through a comparison between effective stiffness calculated through an analytical approach and compression tests of lattice structures, coupled with an investigation of the arrangement of their struts. In order to cover different potential loading scenarios, bending-dominated and stretch-dominated lattice structures made of the commonly used materials 316L and Ti6Al4V are considered, whereby the impact of microstructural phase transformation during processing is taken into account.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3482 ◽  
Author(s):  
Haorui Zhang ◽  
Junjin Huang ◽  
Changmeng Liu ◽  
Yongsheng Ma ◽  
Yafeng Han ◽  
...  

Lattice structures have drawn considerable attention due to their superior mechanical properties. However, the existing fabrication methods for lattice structures require complex procedures, as they have low material utilization and lead to unreliable node connections, which greatly restricts their application. In this work, wire arc additive manufacturing is used to fabricate large-scale lattice structures efficiently, without any air holes between rods and panels. The principle and the process of fabricating the rods were analyzed systematically. The influence of the two most important parameters, including heat input and preset layer height, is disclosed. Through optical microscopy, the microstructure of the fabricated steel rods is found to consist of dendritic austenite and skeletal ferrite. The tensile strength of the rods can reach 603 MPa, and their elongation reaches 77%. These experimental results demonstrated the feasibility of fabricating lattice structures using wire arc additive manufacturing.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 513
Author(s):  
Jae Won Kim ◽  
Jae-Deuk Kim ◽  
Jooyoung Cheon ◽  
Changwook Ji

This study observed the effect of filler metal type on mechanical properties of NAB (NiAl-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology. The selection of filler metal type is must consider the field condition, mechanical properties required by customers, and economics. This study analyzed the bead shape for representative two kind of filler metal types use to maintenance and fabricated a two-dimensional bulk NAB material. The cold metal transfer (CMT) mode of gas metal arc welding (GMAW) was used. For a comparison of mechanical properties, the study obtained three specimens per welding direction from the fabricated bulk NAB material. In the tensile test, the NAB material deposited using filler metal wire A showed higher tensile strength and lower elongation (approx. +71 MPa yield strength, +107.1 MPa ultimate tensile strength, −12.4% elongation) than that deposited with filler metal wire B. The reason is that, a mixture of tangled fine α platelets and dense lamellar eutectoid α + κIII structure with β´ phases was observed in the wall made with filler metal wire A. On the other hand, the wall made with filler metal wire B was dominated by coarse α phases and lamellar eutectoid α + κIII structure in between.


Sign in / Sign up

Export Citation Format

Share Document