Crawler System for Deep Sea ROVs

2009 ◽  
Vol 43 (5) ◽  
pp. 97-104 ◽  
Author(s):  
Tomoya Inoue ◽  
Tokihiro Katsui ◽  
Hisataka Murakami ◽  
Ken Takagi

AbstractIn order to reduce tension on a cable and process movability, a deep sea remotely operated vehicle (ROV) is designed to reduce its weight. However, a lightweight ROV is apt to wheelie when running by means of a crawler system. To run stably in counterpoise, the combination of the center of gravity and the center of buoyancy should be in an adequate area called the “stable area,” which by theory can be obtained as corresponding to the weight and the buoyancy. The stable area becomes small as the weight is light. The combination of the center of gravity and the center of buoyancy is designed to be in the stable area. However, it is important for the ROV to run forward and backward, which results in changing the discrimination of the stable area. This sometimes causes the center of gravity and the center of buoyancy to be outside the stable area. Thus, it is advantageous to increase the weight only when running by crawler system and to change the center of gravity meaningfully. Furthermore, the flipper-type crawler system is advantageous when running on the sea floor with inclination or undulation. This paper proposes a method to virtually increase the weight and to change the center of gravity by using thrusters. This paper also describes the flipper-type crawler system that improves movability when running on the sea floor with inclination or undulation. Furthermore, we conducted preliminary experiments in a water tank using a small-size ROV having four thrusters and a crawler system, a normal-type crawler, and a flipper-type crawler system, to confirm the advantages.

Author(s):  
Tomoya Inoue ◽  
Tokihiro Katsui ◽  
Hisataka Murakami ◽  
Junichiro Tahara

A deep sea ROV is desired to be light from the viewpoints of reducing a tension on an underwater cable and possessing the adequate movability by thrusters in water. On the other hand, when moving by a crawler system on the seabed, such a lightweight will influence on its movability characteristics. As an initial investigation experiments using an actual ROV were conducted in a water tank. And it was observed that the ROV ran in wheelie in some cases and almost fell down in extreme case in spite of the fact that it could run stably on land. In order to clarify the results fundamental theory of stability of the ROV in steady running is presented. The theory gives the discriminant chart of stable running for the combination of the center of gravity and the center of buoyancy. Experiments using a model were conducted to verify the theory. In order to increase the stable area and also to change meaningly the center of gravity, this paper proposes a method to virtually increase the weight and to change the center of gravity by using thrusters. And preliminary experiments were conducted to confirm its advantageous effect.


Author(s):  
Xikun Song ◽  
Mingxin Lyu ◽  
Xiaodi Zhang ◽  
Bernhard Ruthensteiner ◽  
In-Young Ahn ◽  
...  
Keyword(s):  
Deep Sea ◽  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


Author(s):  
A. L. Rice ◽  
D. S. M. Billett ◽  
J. Fry ◽  
A. W. G. John ◽  
R. S. Lampitt ◽  
...  

SynopsisEvidence has accumulated over the past twenty years to suggest that the deep-sea environment is not as constant as was at one time thought, but exhibits temporal variations related to the seasonally in the overlying surface waters. Recent results from deep-moored sediment traps suggest that this coupling is mediated through the sedimentation of organic material, while observations in the Porcupine Seabight indicate that in this region, at least, there is a major and rapid seasonal deposition of aggregated phytodetritus to the sea-floor at slope and abyssal depths.This paper summarises the results of the Porcupine Seabight studies over the past five years or so, using time-lapse sea-bed photography and microscopic, microbiological and chemical analyses of samples of phytodetritus and of the underlying sediment. The data are to some extent equivocal, but they suggest that the seasonal deposition is a regular and dramatic phenomenon and that the material undergoes relatively little degradation during its passage through the water column. The mechanisms leading to the aggregation of the phytodetritus have not been identified, and it is not yet known whether the phenomenon is geographically widespread nor whether it is of significance to the deep-living mid-water and benthic communities.


2012 ◽  
Vol 9 (12) ◽  
pp. 18039-18081 ◽  
Author(s):  
K. S. Meyer ◽  
M. Bergmann ◽  
T. Soltwedel

Abstract. Epibenthic megafauna play an important role in the deep-sea environment and contribute significantly to benthic biomass, but their population dynamics are still understudied. We used a towed deep-sea camera system to assess the population densities of epibenthic megafauna in 2002, 2007 and 2012 at the shallowest station (HG I, ~ 1300 m) of the deep-sea observatory HAUSGARTEN, in the eastern Fram Strait. Our results indicate that the overall density of megafauna was significantly lower in 2007 than in 2002, but was significantly higher in 2012, resulting in overall greater megafaunal density in 2012. Different species showed different patterns in population density, but the relative proportions of predator/scavengers and suspension-feeding individuals were both higher in 2012. Variations in megafaunal densities and proportions are likely due to variation in food input to the sea floor, which decreased slightly in the years preceding 2007 and was greatly elevated in the years preceding 2012. Both average evenness and diversity increased over the time period studied, which indicates that HG I may be food-limited and subject to bottom-up control. The varying dynamics of different species may have been caused by differential capacities of populations to respond to increased food input through either recruitment or migration.


2020 ◽  
Author(s):  
◽  
Moses Thiong'o

The oceans make up about 70% of the earth’s surface and serve as habitats for many deep and shallow creatures. In depths of about 50 meters and more, deep-sea corals and sponges occur mostly along seamounts, continental margins, undersea canyons and ridges. They, deep-sea corals and sponges, play a key role in supporting the health of the ocean as they preserve the biodiversity and long-term sustainability of commercial and recreational fish species. With the many benefits that are attached to deep-sea corals and sponges, the Deep-Sea Corals and Research Technology Program (DSCRTP) has been collecting coral and sponge location data from hundreds of remotely operated vehicle (ROV) surveys. However, DSCRTP does not have a spatial representation of the area covered by each ROV while searching for corals and sponges in the deep-sea. A spatial representation would provide critical information to researchers and managers to understand where a survey for corals and sponges has happened, and where a survey is yet to be done in the deep-sea. Therefore, the goal of this study is to create a spatial representation of the ROV surveys that have been collected in Monterey Bay and Hawaii sections of the deep-sea.


Sign in / Sign up

Export Citation Format

Share Document