Marine Mammal Behavioral Response Studies in Southern California: Advances in Technology and Experimental Methods

2012 ◽  
Vol 46 (4) ◽  
pp. 48-59 ◽  
Author(s):  
Brandon L. Southall ◽  
David Moretti ◽  
Bruce Abraham ◽  
John Calambokidis ◽  
Stacy L. DeRuiter ◽  
...  

AbstractBehavioral response studies (BRS) are increasingly being conducted to better understand basic behavioral patterns in marine animals and how underwater sounds, including from human sources, can affect them. These studies are being enabled and enhanced by advances in both acoustic sensing and transmission technologies. In the design of a 5-year project in southern California (“SOCAL-BRS”), the development of a compact, hand-deployable, ship-powered, 15-element vertical line array sound source enabled a fundamental change in overall project configuration from earlier efforts. The reduced size and power requirements of the sound source, which achieved relatively high output levels and directivity characteristics specified in the experimental design, enabled the use of substantially smaller research vessels. This size reduction favored a decentralization of field effort, with greater emphasis on mobile small boat operations capable of covering large areas to locate and tag marine mammals. These changes in configuration directly contributed to significant increases in tagging focal animals and conducting sound exposure experiments. During field experiments, received sound levels on tagged animals of several different species were within specified target ranges, demonstrating the efficacy of these new solutions to challenging field research problems.

2011 ◽  
Author(s):  
B. Southall ◽  
J. Calambokidis ◽  
P. Tyack ◽  
D. Moretti ◽  
J. Hildebrand ◽  
...  

2020 ◽  
Vol 28 (4) ◽  
pp. 438-448 ◽  
Author(s):  
William D. Halliday ◽  
Matthew K. Pine ◽  
Stephen J. Insley

Underwater noise is an important issue globally. Underwater noise can cause auditory masking, behavioural disturbance, hearing damage, and even death for marine animals. While underwater noise levels have been increasing in nonpolar regions, noise levels are thought to be much lower in the Arctic where the presence of sea ice limits anthropogenic activities. However, climate change is causing sea ice to decrease, which is allowing for increased access for noisy anthropogenic activities. Underwater noise may have more severe impacts in the Arctic compared with nonpolar regions due to a combination of lower ambient sound levels and increased sensitivity of Arctic marine animals to underwater noise. Here, we review ambient sound levels in the Arctic, as well as the reactions of Arctic and sub-Arctic marine mammals to underwater noise. We then relate what is known about underwater noise in the Arctic to policies and management solutions for underwater noise and discuss whether Arctic-specific policies are necessary.


1948 ◽  
Vol 12 (3) ◽  
pp. 382-384
Author(s):  
George Fisk

2018 ◽  
Vol 75 (5) ◽  
pp. 1602-1612 ◽  
Author(s):  
Holly F Goyert ◽  
Beth Gardner ◽  
Richard R Veit ◽  
Andrew T Gilbert ◽  
Emily Connelly ◽  
...  

Abstract Offshore wind energy development on the US Atlantic Continental Shelf has brought attention to the need for marine spatial planning efforts to reduce potential conflict between wind turbines and marine animals, including seabirds. We evaluated the effects of marine mammals, fishes, and habitat characteristics on the distribution and relative abundance of marine birds off the coast of Delaware, Maryland, and Virginia. From May 2012 to 2014, we collected line transect data from 14 shipboard surveys, and novel high-resolution digital videography data from 14 aerial surveys. We compiled five habitat covariates: three static (distance to shore, sea floor slope, and sediment grain size), and two dynamic (sea surface temperature, salinity). We additionally analysed two seabird community covariates: the density of observed marine mammals and detected fish. Using zero-altered models, we tested our hypothesis that plunge-diving seabird species would show positive associations with marine mammals. Our results provide statistical evidence that, alongside competition, facilitative interactions occur among pelagic communities, where subsurface predators improve the detectability and accessibility of prey to surface-feeding seabirds. This study highlights the importance of quantifying community and ecological influences on avian abundance, particularly in predicting the potential exposure of marine birds and mammals to offshore development.


2021 ◽  
Author(s):  
Leslie Roberson ◽  
Chris Wilcox

Abstract Fisheries bycatch continues to drive the decline of many threatened marine species such as seabirds, sharks, marine mammals, and sea turtles. Management frameworks typically address bycatch with fleet-level controls on fishing. Yet, individual operators differ in their fishing practices and efficiency at catching fish. If operators have differing abilities to target species, they should also have differing abilities to anti-target bycatch species. We analyse variations in threatened species bycatch among individual operators from five industrial fisheries representing different geographic areas, gear types, and target species. The individual vessel is a significant predictor of bycatch for 15 of the 16 species-fishery interactions, including species that represent high or low costs to fishers, or have economic value as potentially targeted byproducts. Encouragingly, we found high performance operators in all five fishing sectors, including gears known for high bycatch mortality globally. These results show the potential to reduce negative environmental impacts of fisheries with incentive-based interventions targeting specific performance groups of individuals. Management of threatened species bycatch Incidental catch of marine animals in fishing gear ("bycatch") has been recognized as a serious problem for several decades. Despite widespread efforts to address it, bycatch remains one of the most pressing issues in fisheries management today, especially for threatened or protected species such as sea turtles, seabirds, elasmobranchs, and marine mammals1,2. The most common approaches to reducing bycatch have been command-and-control measures implemented across the entire fleet or industry, such as technology requirements or total allowable catch for particular bycatch species3,4. These conventional approaches have been far from universally successful, and have often performed worse in practice than models and trials suggested, even when the same approach is translated to a similar fishery5. The Skipper Effect Managing bycatch is a problem of fishing efficiency. Although management frameworks typically treat fishing fleets as a unit, several studies suggest that the skill of individual operators (the "skipper effect") could be a driver of important and unexplained variations in fishing efficiency. A skipper's skill is some combination of managerial ability, experience and knowledge of the environment, ability to respond to rapidly changing information and conditions at sea, and numerous other factors that are difficult to describe or record6. There is ongoing debate about the key components of operator skill and its importance in different contexts, such as different gears or technical advancement of fisheries7–10. Yet, numerous studies show consistent variation in target catch rates among anglers, skippers, or fishing vessels that is not explained by environmental variables or economic inputs7,11−13. This includes technically advanced and homogeneous fleets where a skipper's skill would seemingly be less important14. Previously, the skipper effect has been explored in relation to fishing efficiency and profitability (effort and target catch). However, if fishers have differing abilities to catch species they want, it follows that they would also have variable skill at avoiding unwanted species. Untangling the skipper effect is difficult without very detailed data, which are often not available for target catch and are extremely rare for bycatch. We capitalize on a rare opportunity to compare multiple high-resolution fisheries datasets that have information about both target and bycatch. We use fisheries observer data from five Australian Commonwealth fisheries sectors to answer three key questions: 1) Is there significant and predictable variation among operators in their target to bycatch ratios? We hypothesize that there are characteristics at the operator level that lead some vessels to perform worse than others on a consistent basis, and that operator skill is an important factor driving variations in bycatch across fishing fleets; 2) Does the pattern hold across species, gear types, and fisheries? We predict that, irrespective of the bycatch context, there are high performing operators that are able to avoid bycatch while maintaining high target catch; and 3) Does skipper skill transfer across species?” We posit that certain types of bycatch are inherently more difficult to avoid but expect to find correlations between bycatch rates, indicating that a skipper's ability to avoid one species extends to other types of bycatch. If these hypotheses hold true, then there exists untapped potential to reduce bycatch without imposing additional controls on fishing effort and gear. This would support an alternative approach to framing management questions such as those around threatened species bycatch. It may be that it is not a random event across a fishery, but in fact is an issue of particular low performance operators. In this case, measures aimed directly at those individual operators could be an opportunity to make considerable progress towards reducing threatened species bycatch, at potentially much lower cost than common whole-of-fishery solutions.


Sign in / Sign up

Export Citation Format

Share Document