Realizing Reliable Lithium-Ion Batteries for Critical Remote-Located Offshore Systems

2016 ◽  
Vol 50 (6) ◽  
pp. 52-57 ◽  
Author(s):  
Narayanaswamy Vedachalam ◽  
Gidugu Ananda Ramadass

AbstractOn-demand reliability is the key requirement for lithium-ion batteries (LIBs) used for powering time-critical remote-located offshore systems. Based on the reported lithium-ion (li-ion) cell failure model, failure rate and on-demand reliability of a li-ion cell are computed for a range of charge-discharge cycles and maintenance intervals. The results are extended to compute the on-demand reliability of LIB of industry-standard voltage ratings. Results indicate that, with present technical maturity, an LIB with 24V output, 500 annual charge-discharge cycles, and with 6 months of maintenance intervals requires three and six parallel groupings for achieving IEC 61508 Safety Integrity Level 4 under low- and high-demand scenarios, respectively. The results presented could be directly extended to determine the on-demand reliability for LIBs with higher capacities.

Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 71 ◽  
Author(s):  
Yusuke Abe ◽  
Tomoaki Saito ◽  
Seiji Kumagai

Two prelithiation processes (shallow Li-ion insertion, and thrice-repeated deep Li-ion insertion and extraction) were applied to the hard carbon (HC) negative electrode (NE) used in lithium-ion batteries (LIBs). LIB full-cells were assembled using Li(Ni0.5Co0.2Mn0.3)O2 positive electrodes (PEs) and the prelithiated HC NEs. The assembled full-cells were charged and discharged under a low current density, increasing current densities in a stepwise manner, and then constant under a high current density. The prelithiation process of shallow Li-ion insertion resulted in the high Coulombic efficiency (CE) of the full-cell at the initial charge-discharge cycles as well as in a superior rate capability. The prelithiation process of thrice-repeated Li-ion insertion and extraction attained an even higher CE and a high charge-discharge specific capacity under a low current density. However, both prelithiation processes decreased the capacity retention during charge-discharge cycling under a high current density, ascertaining a trade-off relationship between the increased CE and the cycling performance. Further elimination of the irreversible capacity of the HC NE was responsible for the higher utilization of both the PE and NE, attaining higher initial performances, but allowing the larger capacity to fade throughout charge-discharge cycling.


2019 ◽  
Vol 9 (2) ◽  
pp. 3866-3873

Composites of {[(1-x-y) LiFe0.333Ni0.333 Co0.333] PO4}, xLi2FePO4F and yLiCoPO4system were synthesized using the sol-gel method. Stoichiometric weights of the mole-fraction of LiOH, FeCl2·4H2O and H3PO4, LiCl, Ni(NO3)2⋅6H2O, Co(Ac)2⋅4H2O, as starting materials of lithium, Iron, Nickel , and Cobalt, in 7 samples of the system, respectively. We exhibited Li1.167 Ni0.222 Co0.389 Fe0.388 PO4 is the best composition for cathode material in this study. Obviously, the used weight of cobalt in these samples is lower compared with LiCoO2 that is an advantage in view point of cost in this study. Charge-discharge haracteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.4–3.8 V (versus Li/Li+). Our results confirmed, although these kind systems can help for removing the disadvantage of cobalt which mainly is its cost and toxic, the performance of these kind systems are similar to the commercial cathode materials in Lithium Ion batteries (LIBs).


2016 ◽  
Vol 4 (40) ◽  
pp. 15411-15419 ◽  
Author(s):  
Huawei Song ◽  
Lisha Shen ◽  
Jing Wang ◽  
Chengxin Wang

Impressive Li-ion storage, fast charge–discharge and ultra long life spans more than 1000 cycles with high capacity retention are simultaneously obtained in CoCOP nanowires.


2021 ◽  
Author(s):  
Susan A. Odom

Overcharge protection of Li-ion batteries with a variety of phenothiazine derivatives.


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 24132-24136
Author(s):  
Liurui Li ◽  
Tairan Yang ◽  
Zheng Li

The pre-treatment efficiency of the direct recycling strategy in recovering end-of-life Li-ion batteries is predicted with levels of control factors.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kun Wang ◽  
Yongyuan Hu ◽  
Jian Pei ◽  
Fengyang Jing ◽  
Zhongzheng Qin ◽  
...  

High capacity Co2VO4 becomes a potential anode material for lithium ion batteries (LIBs) benefiting from its lower output voltage during cycling than other cobalt vanadates. However, the application of this...


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20386-20389 ◽  
Author(s):  
Chongchong Zhao ◽  
Cai Shen ◽  
Weiqiang Han

Metal organic nanofibers (MONFs) synthesized from precursors of amino acid and copper nitrate were applied as anode materials for Li-ion batteries.


2016 ◽  
Vol 18 (6) ◽  
pp. 4721-4727 ◽  
Author(s):  
Bo Lu ◽  
Yicheng Song ◽  
Qinglin Zhang ◽  
Jie Pan ◽  
Yang-Tse Cheng ◽  
...  

The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge–discharge cycles is investigated theoretically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document