scholarly journals The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

2018 ◽  
Vol 52 (6) ◽  
pp. 81-86 ◽  
Author(s):  
Rosanna J. Milligan ◽  
Andrea M. Bernard ◽  
Kevin M. Boswell ◽  
Heather D. Bracken-Grissom ◽  
Marta A. D'Elia ◽  
...  

AbstractThe deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; <ext-link ext-link-type="uri" href="http://www.deependconsortium.org">www.deependconsortium.org</ext-link>) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m.

Author(s):  
Dubravko Justić ◽  
Villy Kourafalou ◽  
Giulio Mariotti ◽  
Songjie He ◽  
Robert Weisberg ◽  
...  

AbstractEstuarine and coastal geomorphology, biogeochemistry, water quality, and coastal food webs in river-dominated shelves of the Gulf of Mexico (GoM) are modulated by transport processes associated with river inputs, winds, waves, tides, and deep-ocean/continental shelf interactions. For instance, transport processes control the fate of river-borne sediments, which in turn affect coastal land loss. Similarly, transport of freshwater, nutrients, and carbon control the dynamics of eutrophication, hypoxia, harmful algal blooms, and coastal acidification. Further, freshwater inflow transports pesticides, herbicides, heavy metals, and oil into receiving estuaries and coastal systems. Lastly, transport processes along the continuum from the rivers and estuaries to coastal and shelf areas and adjacent open ocean (abbreviated herein as “river-estuary-shelf-ocean”) regulate the movements of organisms, including the spatial distributions of individuals and the exchange of genetic information between distinct subpopulations. The Gulf of Mexico Research Initiative (GoMRI) provided unprecedented opportunities to study transport processes along the river-estuary-shelf-ocean continuum in the GoM. The understanding of transport at multiple spatial and temporal scales in this topographically and dynamically complex marginal sea was improved, allowing for more accurate forecasting of the fate of oil and other constituents. For this review, we focus on five specific transport themes: (i) wetland, estuary, and shelf exchanges; (ii) river-estuary coupling; (iii) nearshore and inlet processes; (iv) open ocean transport processes; and (v) river-induced fronts and cross-basin transport. We then discuss the relevancy of GoMRI findings on the transport processes for ecological connectivity and oil transport and fate. We also examine the implications of new findings for informing the response to future oil spills, and the management of coastal resources and ecosystems. Lastly, we summarize the research gaps identified in the many studies and offer recommendations for continuing the momentum of the research provided by the GoMRI effort. A number of uncertainties were identified that occurred in multiple settings. These include the quantification of sediment, carbon, dissolved gasses and nutrient fluxes during storms, consistent specification of the various external forcings used in analyses, methods for smooth integration of multiscale advection mechanisms across different flow regimes, dynamic coupling of the atmosphere with sub-mesoscale and mesoscale phenomena, and methods for simulating finer-scale dynamics over long time periods. Addressing these uncertainties would allow the scientific community to be better prepared to predict the fate of hydrocarbons and their impacts to the coastal ocean, rivers, and marshes in the event of another spill in the GoM.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
D. A. Rosenfield ◽  
J. W. Caruthers ◽  
D. A. Nechaev ◽  
G. E. Ioup ◽  
J. W. Ioup ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 177-205
Author(s):  
K. Fennel

Abstract. Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in observation-based estimates of nitrogen and carbon fluxes mostly result from uncertainties in the shelf-open ocean exchange of organic and inorganic matter, which is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 539-548 ◽  
Author(s):  
K. Fennel

Abstract. Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in the magnitude of organic and inorganic matter exchange between shelves and the open ocean is a major source of uncertainty in observation-based estimates of nitrogen and carbon fluxes. The shelf-open ocean exchange is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.


2018 ◽  
Vol 6 (4) ◽  
pp. 114 ◽  
Author(s):  
Liujuan Tang ◽  
Edward Myers ◽  
Lei Shi ◽  
Kurt Hess ◽  
Alison Carisio ◽  
...  

We conducted a VDatum-spatially varying uncertainty study for the North-East Gulf of Mexico. The newly developed tide model incorporated the latest available National Ocean Service (NOS) bathymetry survey data and National Geodetic Survey (NGS) shoreline data, and the datum products reflected the updated tidal datum data from the Center for Operational Oceanographic Products and Services (CO-OPS). A gridding technique based on the wavelength of long waves in the deep ocean was applied to improve model efficiency. In this study, we highlight the creation of the tidal datum products and associated spatially varying uncertainty, which was developed by blending the model results, observations, and measurement errors together using a spatially varying uncertainty method based on a variational approach. The study found that model errors, measurement errors, and lack of observations can contribute to large uncertainty in the tidal datum products. The need for high quality bathymetry data in coastal areas is essential for reducing model error. As for the large uncertainty due to lack of observations or large measurement error, this can be improved by placement of new observations with high precision. Compared to a single uncertainty value, the spatially varying uncertainty provides more accurate representation of the uncertainty for the tidal datum products in VDatum. The uncertainty results will be used to help with decision-making on placement of new tide gauges to further reduce the uncertainty in the VDatum products.


Sign in / Sign up

Export Citation Format

Share Document