Nitric oxide and regulation of vascular tone: pharmacological and physiological considerations

1998 ◽  
Vol 7 (2) ◽  
pp. 131-140 ◽  
Author(s):  
J McHugh ◽  
DJ Cheek

The endothelial cells of the vascular system are responsible for many biological activities that maintain vascular homeostasis. Responding to a variety of chemical and physical stimuli, the endothelium elaborates a host of vasoactive agents. One of these agents, endothelium-derived relaxing factor, now accepted as nitric oxide, influences both cellular constituents of the blood and vascular smooth muscle. A principal intracellular target for nitric oxide is guanylate cyclase, which, when activated, increases the intracellular concentration of cyclic guanosine monophosphate, which in turn activates protein kinase G. Acting by this pathway, nitric oxide induces relaxation of vascular smooth muscle and inhibits platelet activation and aggregation. Derangements in endothelial production of nitric oxide are implicated as both cause and consequence of vascular diseases, including hypertension, atherosclerosis, and coronary artery disease.

2001 ◽  
Vol 95 (2) ◽  
pp. 492-499 ◽  
Author(s):  
Hiroshi Maeda ◽  
Hiroshi Iranami ◽  
Manabu Yamamoto ◽  
Koji Ogawa ◽  
Yoshihiro Morikawa ◽  
...  

Background Inducible nitric oxide synthase (iNOS) is induced by endotoxin or cytokines, such as interleukin (IL)-1, through a protein synthesis pathway. Halothane reportedly inhibits protein synthesis in various tissues. The aim of the current study was to examine the effect of halothane on the IL-1beta-evoked induction of NOS in vascular smooth muscle. Methods After removal of the endothelium, arterial rings of rat aorta were mounted in an isometric force recording system. The effects of halothane (1.0-3.0%) or isoflurane (3.0%) on IL-1beta (20 ng/ml)-induced inhibition of the contractile responses to KCl (30 mM) and phenylephrine (10(-9)-10(-5) M) were studied. The cyclic guanosine monophosphate and cyclic adenosine monophosphate contents were determined by radioimmunoassay. Expression of iNOS and iNOS mRNA were measured by Western or Northern blot analysis, respectively. Results Halothane (1.0-3.0%) but not isoflurane (3%) significantly reduced the ML-1beta-induced inhibition of contraction in a concentration-dependent manner. The cyclic guanosine monophosphate content of the vascular smooth muscle increased significantly after a 5-h exposure to IL-1beta. Halothane at 3.0% significantly inhibited the increase in cyclic guanosine monophosphate content induced by IL-1beta. Halothane had no effect on cyclic adenosine monophosphate content. IL-1beta-induced expression of iNOS and iNOS mRNA in the rat aorta were inhibited significantly by halothane. Conclusion The current study demonstrated that halothane but not isoflurane inhibits IL-1beta-stimulated hyporesponsiveness to vasoconstrictive agents in vascular smooth muscle and that this inhibitory effect of halothane involves the inhibition of iNOS mRNA expression. Thus, these findings suggest that halothane may have some sites to affect nitric oxide-signaling pathway.


2001 ◽  
Vol 94 (3) ◽  
pp. 496-506 ◽  
Author(s):  
Thomas A. Stekiel ◽  
Stephen J. Contney ◽  
Naohiro Kokita ◽  
Zeljko J. Bosnjak ◽  
John P. Kampine ◽  
...  

Background The purpose of this study was to compare the effects of isoflurane on membrane and intracellular mechanisms that regulate vascular smooth muscle (VSM) transmembrane potential (Em; which is related to VSM tone) in the spontaneously hypertensive rat (SHR) model of essential hypertension and its normotensive Wistar-Kyoto (WKY) control. Methods Vascular smooth muscle Em values were measured in situ in locally denervated, superfused, intact, small (200-300-microm OD) mesenteric arteries and veins in anesthetized 9-12-week-old SHR and WKY. Effects of 1.0 minimum alveolar concentration (0.60 mM) superfused isoflurane on VSM Em were measured before and during superfusion with specific inhibitors of VSM calcium-activated (KCa) and adenosine triphosphate-regulated (KATP) potassium channels, and with endogenous mediators of vasodilatation (nitric oxide, cyclic guanosine monophosphate, protein kinase G, cyclic adenosine monophosphate, and protein kinase A). Results Isoflurane significantly hyperpolarized small arteries (5 +/- 3.4 mV) and veins (6 +/- 4.7 mV) (pooled SHR and WKY, mean +/- SD). Inhibition of KCa and KATP channels, cyclic adenosine monophosphate, and protein kinase A, but not nitric oxide, cyclic guanosine monophosphate, and protein kinase G, abolished such hyperpolarization equally in SHR and WKY vessels. Conclusions Isoflurane-induced in situ VSM hyperpolarization in denervated, small mesenteric vessels involves a similar activation of KCa and KATP channels and cyclic adenosine monophosphate, but not nitric oxide or cyclic guanosine monophosphate, second messenger pathways in both SHR and WKY. A greater isoflurane-induced VSM hyperpolarization (observed previously in neurally intact SHR vessels) suggests enhanced inhibition of elevated sympathetic neural input as a major mechanism underlying such hyperpolarization (and coupled relaxation) in this neurogenic model of hypertension.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 121
Author(s):  
Swami Prabhuling ◽  
Yasinalli Tamboli ◽  
Prafulla B. Choudhari ◽  
Manish S. Bhatia ◽  
Tapan Kumar Mohanta ◽  
...  

Nitric oxide (NO) is considered to be one of the most important intracellular messengers that play an active role as neurotransmitter in regulation of various cardiovascular physiological and pathological processes. Nitric oxide (NO) is a major factor in penile erectile function. NO exerts a relaxing action on corpus cavernosum and penile arteries by activating smooth muscle soluble guanylate cyclase and increasing the intracellular concentration of cyclic guanosine monophosphate (cGMP). Phophodiesterase (PDE) inhibitors have potential therapeutic applications. NO hybridization has been found to improve and extend the pharmacological properties of the parental compound. The present study describes the synthesis of novel furoxan coupled spiro-isoquinolino-piperidine derivatives and their smooth muscle relaxant activity. The study reveals that, particularly 10d (1.50 ± 0.6) and 10g (1.65 ± 0.7) are moderate PDE 5 inhibitors as compared to Sidenafil (1.43 ± 0.5). The observed effect was explained by molecular modelling studies on phosphodiesterase.


2008 ◽  
Vol 19 (10) ◽  
pp. 4434-4441 ◽  
Author(s):  
Pascal Weinmeister ◽  
Robert Lukowski ◽  
Stefan Linder ◽  
Claudia Traidl-Hoffmann ◽  
Ludger Hengst ◽  
...  

The cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase type I (cGKI) pathway regulates many cellular functions. The current study shows that 8-Br-cGMP stimulates the number of attached primary but not that of subcultured murine vascular smooth muscle cells (VSMCs). These effects of 8-Br-cGMP require the presence of cGKI. In agreement with previous studies, cGKI inhibited the number of cells in repeatedly passaged murine VSMCs. Activation of the cGMP/cGKI pathway in freshly isolated primary VSMCs slightly decreased apoptosis and strongly increased cell adhesion. The stimulation of cell adhesion by cGKI involves an inhibition of the RhoA/Rho kinase pathway and increased exposure of β1 and β3 integrins on the cell surface. Together, these results identify a novel proadhesive function of cGMP/cGKI signaling in primary VSMCs and suggest that the opposing effects of this pathway on VSMC number depend on the phenotypic context of the cells.


Sign in / Sign up

Export Citation Format

Share Document