scholarly journals Joint Modeling of Mixed Responses with Bayesian Modeling and Neural Networks: Performance Comparison with Application to Poultry Data

2018 ◽  
Vol 19 (2) ◽  
pp. 1
Author(s):  
J. C. Hapugoda ◽  
M. R. Sooriyarachchi
1999 ◽  
Author(s):  
Massimiliano Gobbi ◽  
Giampiero Mastinu

Abstract Optimisation of complex mechanical systems has often to be performed by resorting to global approximation. In usual global approximation practice, the original mathematical model is substituted by another mathematical model which gives approximately the same relationships between design variables and performance indexes. This is made to ensure much faster simulations which are of crucial importance to find optimal solutions. In this paper the performances of four global approximation methods (Neural Networks, Kriging, Quadratic Approximation, Linear Interpolation) are compared, with reference to an actual optimal design problem. The performances of a road vehicle suspension system are optimised by varying the system’s design variables. The Pareto-optimal set is derived symbolically. The performances of the different approximation methods taken into consideration are assessed by comparing the numerical- and the analytical-Pareto-optimal results. It is found that Neural Networks obtain the best accuracy.


2020 ◽  
Vol 10 (19) ◽  
pp. 6940 ◽  
Author(s):  
Vincenzo Taormina ◽  
Donato Cascio ◽  
Leonardo Abbene ◽  
Giuseppe Raso

The search for anti-nucleus antibodies (ANA) represents a fundamental step in the diagnosis of autoimmune diseases. The test considered the gold standard for ANA research is indirect immunofluorescence (IIF). The best substrate for ANA detection is provided by Human Epithelial type 2 (HEp-2) cells. The first phase of HEp-2 type image analysis involves the classification of fluorescence intensity in the positive/negative classes. However, the analysis of IIF images is difficult to perform and particularly dependent on the experience of the immunologist. For this reason, the interest of the scientific community in finding relevant technological solutions to the problem has been high. Deep learning, and in particular the Convolutional Neural Networks (CNNs), have demonstrated their effectiveness in the classification of biomedical images. In this work the efficacy of the CNN fine-tuning method applied to the problem of classification of fluorescence intensity in HEp-2 images was investigated. For this purpose, four of the best known pre-trained networks were analyzed (AlexNet, SqueezeNet, ResNet18, GoogLeNet). The classifying power of CNN was investigated with different training modalities; three levels of freezing weights and scratch. Performance analysis was conducted, in terms of area under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy, using a public database. The best result achieved an AUC equal to 98.6% and an accuracy of 93.9%, demonstrating an excellent ability to discriminate between the positive/negative fluorescence classes. For an effective performance comparison, the fine-tuning mode was compared to those in which CNNs are used as feature extractors, and the best configuration found was compared with other state-of-the-art works.


Author(s):  
René Hosch ◽  
Lennard Kroll ◽  
Felix Nensa ◽  
Sven Koitka

Purpose Detection and validation of the chest X-ray view position with use of convolutional neural networks to improve meta-information for data cleaning within a hospital data infrastructure. Material and Methods Within this paper we developed a convolutional neural network which automatically detects the anteroposterior and posteroanterior view position of a chest radiograph. We trained two different network architectures (VGG variant and ResNet-34) with data published by the RSNA (26 684 radiographs, class distribution 46 % AP, 54 % PA) and validated these on a self-compiled dataset with data from the University Hospital Essen (4507, radiographs, class distribution 55 % PA, 45 % AP) labeled by a human reader. For visualization and better understanding of the network predictions, a Grad-CAM was generated for each network decision. The network results were evaluated based on the accuracy, the area under the curve (AUC), and the F1-score against the human reader labels. Also a final performance comparison between model predictions and DICOM labels was performed. Results The ensemble models reached accuracy and F1-scores greater than 95 %. The AUC reaches more than 0.99 for the ensemble models. The Grad-CAMs provide insight as to which anatomical structures contributed to a decision by the networks which are comparable with the ones a radiologist would use. Furthermore, the trained models were able to generalize over mislabeled examples, which was found by comparing the human reader labels to the predicted labels as well as the DICOM labels. Conclusion The results show that certain incorrectly entered meta-information of radiological images can be effectively corrected by deep learning in order to increase data quality in clinical application as well as in research. Key Points:  Citation Format


Sign in / Sign up

Export Citation Format

Share Document