APHANOGMUS FULMEKI ASHMEAD (HYMENOPTERA: CERAPHRONIDAE), A PARASITOID OF APHIDOLETES APHIDIMYZA RONDANI (DIPTERA: CECIDOMYIIDAE)

1993 ◽  
Vol 125 (1) ◽  
pp. 161-162 ◽  
Author(s):  
L.A. Gilkeson ◽  
J. P. McLean ◽  
P. Dessart

The predatory gall midge, Aphidoletes aphidimyza (Rondani 1847), is a biological control agent used worldwide to control aphids. Mass-production methods are well established in Canada, the Netherlands, England, Germany, Finland, and the former U.S.S.R. (cf. van Leiburg and Ramakers 1984). In early March 1991, after 6 years of massproduction of A. aphidimyza on a rapidly increasing scale, two minute adult hymenopterous parasitoids were observed eclosing from a sample of pupae at a commercial insectary in British Columbia. It is likely that the founding parasitoid individual(s) entered the greenhouse before winter, as parasitoids appeared too early in the year to have entered from outdoors at that time.

2002 ◽  
Vol 134 (1) ◽  
pp. 69-75 ◽  
Author(s):  
D.R. Gillespie ◽  
D.M.J. Quiring

AbstractLarvae of the predatory gall midge Feltiella acarisuga (Vallot) diapaused as prepupae in tightly woven, brown, silk cells on leaf surfaces. Photoperiod alone, at day lengths from 16 to 8 h did not induce diapause at either 20 or 25 °C. A low incidence of diapause was induced by a combined photoperiod and thermoperiod of an 8-h day at 25 °C and a 16-h night at 15 °C. The incidence of diapause was higher under these conditions if the larvae were fed diapausing spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae). Because F. acarisuga only diapauses at daylengths equivalent to mid-winter, when its prey, T. urticae, is also in diapause, it can be used as a biological control agent for T. urticae in British Columbia greenhouses throughout most of the growing season.


2004 ◽  
Vol 4 (4) ◽  
pp. 605-607 ◽  
Author(s):  
CASANDRA J. LLOYD ◽  
ANDREW P. NORTON ◽  
RUTH A. HUFBAUER ◽  
STEVEN M. BOGDANOWICZ ◽  
SCOTT J. NISSEN

2021 ◽  
Vol 948 (1) ◽  
pp. 012019
Author(s):  
M N Maqalina ◽  
I S Harahap ◽  
P Hidayat

Abstract The cogongrass gall midge, Orseolia javanica, has been identified as a biological control agent with the ability to specifically attack cogongrass (Imperata cylindrica) or known in Indonesia as alang-alang. However, in the field, the cogongrass gall midge has a high parasitism by insect parasitoids, which could lead to population collapse. Information regarding the insect parasitoids of the cogongrass gall midge is a very limited. The objectives of this study was to describe and identify the new reported cogongrass gall midge parasitoids in Gunung Gadung cemetery in Cipaku, South Bogor District, Bogor. This study was conducted by taking the cogongrass galls in the field, maintaining in the laboratory, identificating the parasitoids, and calculating the percentage of parasitism. The study has been conducted from August 2020 to May 2021. Three new reported parasitoids were identified on O. javanica in addition to five already known parasitoid, they were Eurytoma sp. (Hymenoptera: Eurytomidae), Lamprotatus sp. (Hymenoptera: Pteromalidae), and Nigeriella sp. (Hymenoptera: Agaonidae). These parasitoids may be able to reduce the effectiveness of the cogongrass gall-midge in controlling the cogongrass. Their morphological characters, descriptions, and percentage of parasitism are presented.


2017 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Helda Orbani Rosa ◽  
Samharinto . ◽  
Lyswiana Aphrodyanti

<p>Water lettuce (<em>Pistia stratiotes</em>) is one of the important aquatic weeds because it can cause many problems for humans and the environment. In addition, the declining quality and quantity of water is also due to the invasion of water lettuce weeds covering the surface of waters, which can lead to the increasing transpiration and destruction of plankton making the balance of the ecosystem disrupted. This study was conducted in an attempt to control <em>P.</em><em> Stratiotes</em> by utilizing the biological control agent <em>Spodoptera pectinicornis</em> with mass production and its releasing applications in South Kalimantan’s waters. The study was started by taking and collecting <em>S. pectinicornis</em> from several places/fields. The moths were then placed in trays of water and put in a gauze cage of 75 cm x 75 cm x 75 cm in order to keep the air circulation. They were nourished in the laboratory to produce groups of eggs. The groups of eggs were then transferred to rearing ponds. When a fair number of agents were obtained, the treatment of liquid fertilizer AB Mix was carried out. The results showed that the fertilization treatment to water lettuce weeds as the food for the biological control agent <em>S. pectinicornis</em> did not differ from the condition when there was no fertilization treatment either on the feeding ability, weight of larvae and pupae or fitness of imago. However, its destructive ability is high that it has a big potential as a biological control of water lettuce.</p>


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 790
Author(s):  
Dale A. Halbritter ◽  
Min B. Rayamajhi ◽  
Gregory S. Wheeler ◽  
Jorge G. Leidi ◽  
Jenna R. Owens ◽  
...  

Pseudophilothrips ichini is a recently approved biological control agent for the highly invasive Brazilian peppertree in Florida, USA. Prior to approval for field release in 2019, thrips colonies used for host specificity testing were produced and maintained in small cylinders to fit in restricted quarantine spaces. This next segment in the classical biological control pipeline is mass production and distribution of P. ichini. To accomplish this, we developed novel techniques to expand from small colony maintenance to large-scale production. We first quantified the productivity of the small cylinders, each containing a 3.8 L potted plant and producing an average of 368 thrips per generation. Given the amount of maintenance the cylinders required, we investigated larger cages to see if greater numbers of thrips could be produced with less effort. Acrylic boxes (81.5 × 39.5 × 39.5 cm) each contained two 3.8 L plants and produced an average of 679 thrips per generation. The final advancement was large, thrips-proof Lumite® screen cages (1.8 × 1.8 × 1.8 m) that each held six plants in 11.4 L pots and produced 13,864 thrips in as little as 5 wk. Screen cages and cylinders had the greatest thrips fold production, but screen cages required ten times less labor per thrips compared to either cylinders or boxes. The efficiency of these large screen cages ensured sustained mass production and field release capacity in Schinus-infested landscapes. The screen cage method is adapted and used by collaborators, and this will expand the literature on beneficial thrips mass rearing methods.


1996 ◽  
Vol 128 (4) ◽  
pp. 775-776 ◽  
Author(s):  
A.S. McClay

The gall midge Cystiphora sonchi (Bremi) has been released and established in Alberta and other Canadian provinces as a biological control agent for the introduced weed perennial sow-thistle (Sonchus arvensis L.) (Peschken et al. 1989). Cystiphora sonchi oviposits in the expanding leaves of S. arvensis (DeClerck-Floate and Steeves 1995), where the-larvae form pustule galls, each containing a single larva. They pupate in a cocoon in the gall or sometimes in the soil after exiting from their galls. Adults are short-lived (usually 1 day or less) and do not feed (Peschken 1982). Under field conditions in Alberta, C. sonchi produces three generations a year (Peschken et al. 1989)


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 669
Author(s):  
Deyu Zou ◽  
Thomas A. Coudron ◽  
Lisheng Zhang ◽  
Weihong Xu ◽  
Jingyang Xu ◽  
...  

Mass production of Coenosia attenuata Stein at low cost is very important for their use as a biological control agent. The present study reports the performance of C. attenuata adults when reared on Drosophila melanogaster Meigen or Bradysia impatiens (Johannsem). Different densities (6, 9, 15, 24 and 36 adults per predator) of D. melanogaster or (6, 12, 24, 36 and 48 adults per predator) of B. impatiens were used at 26 ± 1 °C, 14:10 (L:D) and 70 ± 5% RH. The results concluded that C. attenuata adults had higher fecundity, longer longevity and less wing damage when reared on B. impatiens adults compared to D. melanogaster adults. Additionally, C. attenuata adults demonstrated greater difficulty catching and carrying heavier D. melanogaster adults than lighter B. impatiens adults. In this case, 12 to 24 adults of B. impatiens daily per predator were considered optimal prey density in the mass rearing of adult C. attenuata.


Sign in / Sign up

Export Citation Format

Share Document