Discovery of Trissolcus japonicus (Hymenoptera: Scelionidae) in Ontario, Canada

2019 ◽  
Vol 151 (6) ◽  
pp. 824-826 ◽  
Author(s):  
Tara D. Gariepy ◽  
Elijah J. Talamas

AbstractWe report the detection and adventive establishment of the samurai wasp, Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), a candidate classical biological control agent for the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), in southwestern Ontario, Canada. Nine naturally laid, field-collected pentatomid egg masses were collected in 2017 and 2018, and two of these egg masses, belonging to Halyomorpha halys and Podisus maculiventris (Say) (Hemiptera: Pentatomidae), produced adults of T. japonicus. The identification of T. japonicus was confirmed using DNA barcoding as well as morphological characteristics. The remaining egg masses yielded adults of the native Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and Anastatus reduvii (Ashmead) (Hymenoptera: Eupelmidae).

2021 ◽  
Author(s):  
Lucrezia Giovannini ◽  
Giuseppino Sabbatini-Peverieri ◽  
Leonardo Marianelli ◽  
Gabriele Rondoni ◽  
Eric Conti ◽  
...  

Abstract The invasive stink bug Halyomorpha halys is a severe agricultural pest of worldwide importance, and chemical insecticides are largely sprayed for the control of its populations. Negative impacts and several failures in chemical pest management led to consider classical biological control as one of the most promising methods in a long-term perspective. The Asian egg parasitoid Trissolcus japonicus is the main candidate biocontrol agent of H. halys, but more recently a second Asian egg parasitoid, Trissolcus mitsukurii, is getting attention after adventive populations were found on H. halys egg masses in Europe. Before recommending the use of T. mitsukurii for biological control of H. halys, a risk analysis is necessary and therefore here we present the first study on the fundamental physiological host range of this parasitoid in Europe. Tests conducted with T. mitsukurii on different hemipterans, using three different experimental designs, revealed a broad physiological host range, comparable with the host range displayed by T. japonicus under similar laboratory conditions. Specifically, in addition to its coevolved host H. halys, T. mitsukurii successfully parasitized the majority of tested pentatomid species and one scutellerid, although with highly variable emergence rates. Host egg sizes positively affected parasitoid size and female egg load. Further studies, testing more complex systems that involve olfactory cues from host and host plants, will simulate different aspects of the parasitoid host location behavior under field conditions, allowing in-depth evaluation of the possible risks associated with the use of T. mitsukurii as a biocontrol agent of H. halys.


2021 ◽  
Author(s):  
Dalton C Ludwick ◽  
Layne B Leake ◽  
William R Morrison ◽  
Jesús R Lara ◽  
Mark S Hoddle ◽  
...  

Abstract Halyomorpha halys (Stål) is an invasive pest in the United States and other countries. In its native range, H. halys eggs are parasitized by a co-evolved parasitoid, Trissolcus japonicus (Ashmead). In the United States, T. japonicus, a classical biological control candidate, is being redistributed in many states where adventive populations exist. To establish if H. halys egg holding conditions affect T. japonicus foraging behavior or successful parasitism, naïve, female parasitoids from an adventive population were allowed to forage in laboratory bioassay arenas with either fresh or frozen (−20 or −80°C) egg masses, the latter held for five durations ranging from 1 h to 112 d. Parasitoid movements were recorded for 1 h. Thereafter, parasitoids were transferred with the same egg mass for 23 h. Additionally, female parasitoids from a quarantine colony were exposed to: 1) pairs of fresh egg masses and egg masses frozen at −40°C (>24 h) or 2) a single fresh egg mass or egg mass frozen at −40°C (<1 h). All exposed egg masses were held to assess progeny emergence. In the foraging bioassay, holding temperature and storage duration appeared to influence host-finding and host quality. Egg masses held at −80°C and fresh egg masses resulted in significantly greater levels of parasitism and progeny emergence compared with eggs held at −20°C. No differences were recorded between egg masses held at −40°C for ≤1 h and fresh egg masses. These results will help refine methods for preparation of egg masses for sentinel monitoring and parasitoid mass rearing protocols.


2014 ◽  
Vol 104 (3) ◽  
pp. 367-375 ◽  
Author(s):  
C. Tavares ◽  
H. Jactel ◽  
I. van Halder ◽  
Z. Mendel ◽  
M. Branco

AbstractSpecialization is an important attribute of a biological control agent. The maritime pine bast scale,Matsucoccus feytaudiDucasse (Hemiptera Matsucoccidae), is an invasive species in Southeast France and the North of Italy.Iberorhyzobius rondensisEizaguirre (Coleoptera: Coccinellidae), is a recently described ladybird species. Both adults and larvae are predaceous, feeding on egg masses ofM. feytaudi, and are strongly attracted toM. feytaudi’s sex pheromone. To evaluate the potential ofI. rondensisas a biocontrol agent of the scale, we studied its niche breadth and prey range with emphasis on pine forests and hemipterans as tested prey. In this study,I. rondensiswas found to achieve complete development only when fed onM. feytaudiegg masses (92.9% survival) and an artificial prey: eggs ofEphestia kuehniellaZeller (27.6% survival). From the 2nd instar onwards, complete development could be achieved using other prey species, although larvae had significantly higher mortality and slower development. In choice tests,M. feytaudiwas the preferred prey. Surveys of the ladybird populations in the Iberian Peninsula revealed that it was found exclusively onPinus pinasterAiton, the sole host ofM. feytaudi. The unusual specialization ofI. rondensis, among other predaceous ladybirds, makes it an appropriate candidate for classical biological control ofM. feytaudi.


Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


Author(s):  
Lucrezia Giovannini ◽  
Giuseppino Sabbatini-Peverieri ◽  
Leonardo Marianelli ◽  
Gabriele Rondoni ◽  
Eric Conti ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Joshua M Milnes ◽  
Elizabeth H Beers

Abstract Trissolcus japonicus (Ashmead), an Asian parasitoid of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), was first detected in North America in 2014. Although testing in quarantine facilities as a candidate for classical biological control is ongoing, adventive populations have appeared in multiple sites in the United States, Canada, and Europe. Extensive laboratory testing of T. japonicus against other North American pentatomids and H. halys has revealed a higher rate of parasitism of H. halys, but not complete host specificity. However, laboratory tests are necessarily artificial, in which many host finding and acceptance cues may be circumvented. We offered sentinel egg masses of three native pentatomid (Hemiptera: Pentatomidae) pest species (Chinavia hilaris (Say), Euschistus conspersus Uhler, and Chlorochroa ligata (Say)) in a field paired-host assay in an area with a well-established adventive population of T. japonicus near Vancouver, WA. Overall, 67% of the H. halys egg masses were parasitized by T. japonicus during the 2-yr study. Despite the ‘worst case’ scenario for a field test (close proximity of the paired egg masses), the rate of parasitism (% eggs producing adult wasps) on all three native species was significantly less (0.4–8%) than that on H. halys eggs (77%). The levels of successful parasitism of T. japonicus of the three species are C. hilaris > E. conspersus > C. ligata. The potential impact of T. japonicus on these pentatomids is probably minimal.


Sign in / Sign up

Export Citation Format

Share Document