FDPSOs: The New Reality, and a Game-Changing Approach to Field Development and Early Production Systems

Author(s):  
W.D. Harris ◽  
Harry J. Howard ◽  
Kenneth Christopher Hampshire ◽  
Jeffrey Allen Moore ◽  
Kenneth J. Bayne ◽  
...  
2011 ◽  
Vol 133 (05) ◽  
pp. 54-62

This article summarizes development of the Azurite field as a way of providing context for evolution of the Floating, Drilling, Production, Storage and Offloading (FDPSO) concept. It also reflects on the project’s technical and economic drivers that led the Azurite project team to select the FDPSO concept. The paper also highlights other application for FDPSOs and discusses some of the key variables that determine the suitability of the FDPSO concept for use in field developments. The step change in economics afforded by the incorporation of a drilling rig onboard a conventional FPSO brings new hope to fields of similar geometry and in similar environments that heretofore were considered marginally economic or uneconomic. The FDPSO concept also has application as an early production system, in advance of full-field developments. The concept has tremendous potential as a ‘game changer’ for field developments, whether it is employed to unlock the value of marginal fields in deepwater – even in a low oil price environment – or as an early production system. As the concept employs a drilling rig onboard the vessel, traditional challenges regarding deepwater drilling rig day rates and availability are eliminated.


2011 ◽  
Vol 51 (2) ◽  
pp. 671
Author(s):  
Hayden Marcollo ◽  
Christopher Carra

Floating early production systems (FEPS) are becoming more important to the successful exploitation of Australia's deep water oil and gas. Importantly, FEPS help oil and gas operators reduce deep water full field development risk, as uncertainty in the reservoir characteristics are reduced by obtaining dynamic data (that is, partially producing some of the reservoir). This paper will present a review of existing FEPS that are now in use or have previously been in use worldwide and will discuss where they are headed in the future. The paper focuses on: The selection of the floating and subsea-vessel, mooring, riser, mechanical connection, etcetera; Technology presently available; and, Addressing the requirements in situations where new floating and subsea technology is needed. The qualification limits of existing technology will be discussed in the context of what systems are ready and off-the-shelf for operators to make use of now. The choice of appropriate FEPS will be discussed as a function of: proximity to pipeline infrastructure, potential production rate, capability to re-inject associated gas, prevailing variation in year-round environmental conditions, waterdepth, and, geotechnical description of sea bottom. A high level conceptual case study showing typical costs for the implementation of a deep water FEPS will be presented as a way of understanding the potential upside and downside exposure for an operator considering undertaking a deep water FEPS program.


Author(s):  
Hanqing Zhang ◽  
Derek Smith

Dry tree top-tensioned risers (TTRs) are widely used on floating production systems such as TLPs and Spars for drilling, completion, workover and production. The interference between neighboring TTRs is an important consideration which has a direct impact on the total TTR payload budget and the wellbay size for floater sizing and cost. Since the realistic sizing of a floater is essential towards the concept selection process for a field development, TTR interference should be addressed at the early stages of an offshore oilfield development. If the floater is a tension leg platform (TLP) and the field has strong current with associated extreme waves, riser interference may be very challenging and can have direct impact on riser design and the sizing and layout of the TLP. The waves and the oscillating motions of the TLP will have effects on riser interference. The oscillating motion of the TLP can excite the vibrational motion of the risers, and the wave-induced velocity of water particles and the motions of the risers with the movement of the TLP increases the relative flow acting on each riser. The combined effects will increase the deflection of the risers and thus the likelihood of riser interference. The industry has not seen an acceptable interference analysis approach yet which can account for the combined effects of current, waves, and TLP motions. This paper proposes two engineering approaches for the interference analysis of top tensioned risers for tension leg platforms with the combined effects of current, surface waves, and associated floater motions being addressed.


Author(s):  
Michael Choi ◽  
Andrew Kilner ◽  
Hayden Marcollo ◽  
Tim Withall ◽  
Chris Carra ◽  
...  

To avoid making billion dollar mistakes, operators with discoveries in deepwater (∼3,000m) Gulf of Mexico (GoM) need dependable well performance, reservoir response and fluid data to guide full-field development decisions. Recognizing this need, the DeepStar consortium developed a conceptual design for an Early Production System (EPS) that will serve as a mobile well test system that is safe, environmentally friendly and cost-effective. The EPS is a dynamically positioned (DP) Floating, Production, Storage and Offloading (FPSO) vessel with a bundled top tensioned riser having quick emergency disconnect capability. Both oil and gas are processed onboard and exported by shuttle tankers to local markets. Oil is stored and offloaded using standard FPSO techniques, while the gas is exported as Compressed Natural Gas (CNG). This paper summarizes the technologies, regulatory acceptance, and business model that will make the DeepStar EPS a reality. Paper published with permission.


Author(s):  
Yihan Xing ◽  
Muk Chen Ong ◽  
Tor Hemmingsen ◽  
Kjell Einar Ellingsen ◽  
Lorents Reinås

Abstract Subsea pipelines and umbilicals are used for the transportation of fluids and electrical power between subsea installations and floating production systems (FPUs). The installation and maintenance of these systems can be expensive. In a conventional subsea field development, the produced fluids can be transported from the well to a FPU where they can be offloaded to a tanker (surface ship). In the case of carbon dioxide (CO2) injection into the well, the direction of flow is reversed, i.e., CO2 flows from the tanker to the FPU, down the riser base and through the subsea pipelines to the well. This offloading process is weather-dependent and cannot be performed in severe weather conditions, i.e., strong winds and large waves. This paper presents a novel subsea shuttle tanker system proposed by Equinor ASA designed to be a possible alternative to subsea pipelines, umbilicals and tanker ships. The subsea shuttle is intended to operate submerged under the sea surface to transport liquid CO2 from an existing offshore/land facility where CO2 is captured to a subsea well where the CO2 is injected into the reservoir. As the shuttle is subsea, it can operate under any type of weather conditions. Even though the subsea shuttle is proposed as a vehicle for liquid CO2 transport, it can also transport other types of cargo such as hydrocarbons, injection fluids, electrical power or subsea tools. The paper will discuss the most important design considerations surrounding the subsea shuttle tanker.


1983 ◽  
Author(s):  
C.A. Tigre ◽  
Hannfried A. Schaller ◽  
Cesar Del Lucchese ◽  
Sergio A. Possato

Sign in / Sign up

Export Citation Format

Share Document