Numerical Prediction of Spilled Oil Behavior in the Sea of Okhotsk Under Sea Ice Conditions

Author(s):  
Hajime Yamaguchi ◽  
Kay I. Ohshima ◽  
Naoki Nakazawa
Author(s):  
Margarita Illarionova ◽  
Margarita Illarionova

The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.


1990 ◽  
Vol 14 ◽  
pp. 226-229 ◽  
Author(s):  
Claire L. Parkinson

Comparison of monthly averaged sea-ice distributions in the Sea of Okhotsk with atmospheric pressure data during the four winters having passive-microwave sea-ice coverage from the Nimbus 5 satellite, 1973–76, revealed a strong apparent relationship between the extent of the sea-ice cover and the influence of the Siberian High atmospheric pressure system. Examination of data for the years 1978–86, having passive-microwave coverage from the Nimbus 7 satellite, reveals that the strong correspondence found for 1973–76 between Okhotsk sea-ice extents and the Siberian High was not maintained in the 1978–86 period. A weaker correspondence continued, however, between the sea ice and the combined Siberian High/Aleutian Low system. A Siberian High/Aleutian Low index was created, and the correlation coefficient between that index and sea-ice extents in the midwinter month of February is 0.97 for the 1973–76 period and 0.52 for the 1978–86 period. Primary reasons for the lack of a consistently strong monthly averaged ice/atmosphere correspondence are: the various oceanographic influences on the sea-ice cover, the failure of monthly averages to reflect fully the important shorter-term interactions between the ice and the atmosphere, and the fact that ice conditions in one month are influenced by ice conditions in previous months.


1990 ◽  
Vol 14 ◽  
pp. 226-229 ◽  
Author(s):  
Claire L. Parkinson

Comparison of monthly averaged sea-ice distributions in the Sea of Okhotsk with atmospheric pressure data during the four winters having passive-microwave sea-ice coverage from the Nimbus 5 satellite, 1973–76, revealed a strong apparent relationship between the extent of the sea-ice cover and the influence of the Siberian High atmospheric pressure system. Examination of data for the years 1978–86, having passive-microwave coverage from the Nimbus 7 satellite, reveals that the strong correspondence found for 1973–76 between Okhotsk sea-ice extents and the Siberian High was not maintained in the 1978–86 period. A weaker correspondence continued, however, between the sea ice and the combined Siberian High/Aleutian Low system. A Siberian High/Aleutian Low index was created, and the correlation coefficient between that index and sea-ice extents in the midwinter month of February is 0.97 for the 1973–76 period and 0.52 for the 1978–86 period. Primary reasons for the lack of a consistently strong monthly averaged ice/atmosphere correspondence are: the various oceanographic influences on the sea-ice cover, the failure of monthly averages to reflect fully the important shorter-term interactions between the ice and the atmosphere, and the fact that ice conditions in one month are influenced by ice conditions in previous months.


Author(s):  
Margarita Illarionova ◽  
Margarita Illarionova

The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.


2012 ◽  
Author(s):  
N. Nakazawa ◽  
J. Ono ◽  
H. Yamaguchi ◽  
K.I. Ohshima ◽  
A. Kurokawa

2021 ◽  
Author(s):  
Matthew Z. Williams ◽  
Melissa Gervais ◽  
Chris E. Forest

2011 ◽  
Vol 52 (57) ◽  
pp. 1-8 ◽  
Author(s):  
Yasushi Fukamachi ◽  
Kay I. Ohshima ◽  
Yuji Mukai ◽  
Genta Mizuta ◽  
Masaaki Wakatsuchi

AbstractIn the southwestern part of the Sea of Okhotsk off Hokkaido, sea-ice drift characteristics are investigated using the ice and water velocities obtained from a moored upward-looking acoustic Doppler current profiler (ADCP) during the winters of 1999–2001. Using hourly-mean values of these data along with the wind data measured at a nearby coastal station, the wind factor and turning angle of the relative velocity between the ice and water velocities with respect to the wind are calculated assuming free drift under various conditions. Since the simultaneous sea-ice draft data are also available from a moored ice-profiling sonar (IPS), we examine the dependence of drift characteristics on ice thickness for the first time. As ice thickness increases and wind decreases, the wind factor decreases and the turning angle increases, as predicted by the theory of free drift. This study clearly shows the utility of the moored ADCP measurement for studying sea-ice drift, especially with the simultaneous IPS measurement for ice thickness, which cannot be obtained by other methods.


Sign in / Sign up

Export Citation Format

Share Document