scholarly journals The Impact of the Siberian High and Aleutian Low on the Sea-Ice Cover of the Sea of Okhotsk

1990 ◽  
Vol 14 ◽  
pp. 226-229 ◽  
Author(s):  
Claire L. Parkinson

Comparison of monthly averaged sea-ice distributions in the Sea of Okhotsk with atmospheric pressure data during the four winters having passive-microwave sea-ice coverage from the Nimbus 5 satellite, 1973–76, revealed a strong apparent relationship between the extent of the sea-ice cover and the influence of the Siberian High atmospheric pressure system. Examination of data for the years 1978–86, having passive-microwave coverage from the Nimbus 7 satellite, reveals that the strong correspondence found for 1973–76 between Okhotsk sea-ice extents and the Siberian High was not maintained in the 1978–86 period. A weaker correspondence continued, however, between the sea ice and the combined Siberian High/Aleutian Low system. A Siberian High/Aleutian Low index was created, and the correlation coefficient between that index and sea-ice extents in the midwinter month of February is 0.97 for the 1973–76 period and 0.52 for the 1978–86 period. Primary reasons for the lack of a consistently strong monthly averaged ice/atmosphere correspondence are: the various oceanographic influences on the sea-ice cover, the failure of monthly averages to reflect fully the important shorter-term interactions between the ice and the atmosphere, and the fact that ice conditions in one month are influenced by ice conditions in previous months.

1990 ◽  
Vol 14 ◽  
pp. 226-229 ◽  
Author(s):  
Claire L. Parkinson

Comparison of monthly averaged sea-ice distributions in the Sea of Okhotsk with atmospheric pressure data during the four winters having passive-microwave sea-ice coverage from the Nimbus 5 satellite, 1973–76, revealed a strong apparent relationship between the extent of the sea-ice cover and the influence of the Siberian High atmospheric pressure system. Examination of data for the years 1978–86, having passive-microwave coverage from the Nimbus 7 satellite, reveals that the strong correspondence found for 1973–76 between Okhotsk sea-ice extents and the Siberian High was not maintained in the 1978–86 period. A weaker correspondence continued, however, between the sea ice and the combined Siberian High/Aleutian Low system. A Siberian High/Aleutian Low index was created, and the correlation coefficient between that index and sea-ice extents in the midwinter month of February is 0.97 for the 1973–76 period and 0.52 for the 1978–86 period. Primary reasons for the lack of a consistently strong monthly averaged ice/atmosphere correspondence are: the various oceanographic influences on the sea-ice cover, the failure of monthly averages to reflect fully the important shorter-term interactions between the ice and the atmosphere, and the fact that ice conditions in one month are influenced by ice conditions in previous months.


2005 ◽  
Vol 42 ◽  
pp. 380-388 ◽  
Author(s):  
Kunio Rikiishi ◽  
Shinya Takatsuji

AbstractCharacteristic features of the growth of sea-ice extent in the Sea of Okhotsk are discussed statistically in relation to the surface wind and air temperature over the Okhotsk basin. It is shown that cold-air advection from the continent is not the only factor for the growth of ice extent: air-mass transformation with fetch (downwind distance from the coast) is another important factor. Using weekly growth rates of ice extent and objectively analyzed meteorological data, it is shown that the ice cover extends when cold northerly/northwesterly winds blow, whereas the ice cover retreats when warm northeasterly/easterly winds blow. It is concluded that the advance/retreat of the Sea of Okhotsk ice cover is largely determined by the atmospheric circulation, which is in turn controlled by the position and intensity of the Aleutian low. Occasional out-of-phase fluctuations between the Sea of Okhotsk and Bering Sea ice covers are found to occur when an intensified Aleutian low is located in the mid-western part of the Bering Sea and induces cold northwesterly winds to the Okhotsk basin and warm southeasterly winds to the Bering Sea, or when a weakened Aleutian low is displaced eastward and induces cold northeasterly winds to the Bering Sea and warm northeasterly winds to the Okhotsk basin.


Author(s):  
K. Cho ◽  
K. Naoki ◽  
J. Comiso

Abstract. Global warming is one of the most serious problems we are facing in the 21st Century. Sea ice has an important role of reflecting the solar radiation back into space. However, once sea ice started to melt, the ice-free water would absorb the solar radiation and amplify global warming in the Arctic region. Thus, importance of sea ice monitoring is increasing. Since longer wavelength microwave can penetrate clouds, passive microwave radiometers on-board satellites are powerful tools for monitoring the global distribution of sea ice on daily basis. The Advanced Passive Microwave Scanning Radiometer AMSR2 which was launched by JAXA in May 2012 on-board GCOM-W satellite provides brightness temperature data that are used to estimate sea ice concentration, the fundamental parameter that is used to monitor the sea ice cover. JAXA is providing AMSR2 sea ice concentration data, derived using ASMR2 Bootstrap Algorithm as a standard product of AMSR2, as a means to communicate how the sea ice cover is changing. This paper describes the advantages of AMSR2 in calculating sea ice concentration and evaluate the accuracy of the sea ice concentration in the Sea of Okhotsk by comparing the result with simultaneously collected MODIS data. The result suggested that under normal winter condition, the RMSE of the AMSR2 sea ice concentration could be less than 10%.


2021 ◽  
Author(s):  
Elena Surovyatkina

<p>In 2020, the Arctic Circle warming in Siberia was extraordinary. Strong anticyclones have been dominant over a large area in Northern Siberia through spring. It resulted in an all-time high-temperature record in the Arctic Circle - more than 6°C above the average (1981–2010). Thus, it accelerated the melting of snow, ice, permafrost and has gotten the wildfire in Siberia off to an unusually early and severe start. The Arctic warming has repercussions not only for Siberia but for the entire Eurasia and the Northern Hemisphere. Specifically, the Arctic conditions affect atmospheric circulation in the Pacific Ocean and the strength and direction of trade winds in the tropical zone.</p><p>Here, I show that Arctic Circle warming has impacted the timing of monsoon and sea ice seasons. First, I found the observational evidence of Arctic warming causing colder than average temperatures over the east of Eurasia, Central Europe, and Central Asia. Notably, North Pakistan and Northern India saw temperatures distinctly below the long-term average (1981–2010): 4°C below from March to December. Second, I took this evidence into account while developing a new method for forecasting the sea-ice timing and the recent long-range forecasting method of monsoon season [1]. Third, based on the forecast results for 2020, I found that utilizing only recent trends is an inadequate strategy for predictions. However, considering the current Arctic warming outcomes in specific regions overcomes this problem and results in successful forecasts for both sea-ice and monsoon seasons.</p><p>The results imply that when North Pakistan's temperature is cooler than usual: (i) it slows down an advance of monsoon, (ii) it accelerates the cooling of the entire Indian subcontinent during withdrawal from northern Pakistan to the east coast of central India. Hence, North Pakistan's cooling in 2020 caused a protracted offensive and early end of the Indian summer monsoon, thus, shortening its duration. As a result, it led to the early onset of the seasonal wind reversal in the eastern Pacific Ocean in the middle of October and, therefore, to the surprisingly early onset of the winter monsoon in South Asia and India [2]. The consequences of this change in monsoon timing strongly affected 70% of the Indian population directly related to farming.</p><p>In the Sea of Okhotsk in 2020, the sea ice retreated early due to heatwaves in Siberia. In December, the onset date of ice season was around average, but ice grew faster than average, creating a hazard to navigation safety.</p><p>Hence, the proposed forecasting methodology applied to India and the Sea of Okhotsk opens new possibilities to forecasting monsoon and sea ice seasons around the globe.</p><p>The author acknowledges financial support from RFBR, project number 20-07-01071 .</p><p> </p><p>[1] Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths (2016): Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. GRL 43, 1–9 [doi:10.1002/2016GL068392]</p><p>[2] https://www.pik-potsdam.de/en/output/infodesk/forecasting-indian-monsoon</p>


1983 ◽  
Vol 88 (C5) ◽  
pp. 2793 ◽  
Author(s):  
Claire L. Parkinson ◽  
Andrew J. Gratz

Author(s):  
K. Cho ◽  
Y. Sato ◽  
K. Naoki

Passive microwave radiometers on-board satellites can penetrate clouds and can monitor the global sea ice distribution on daily basis. The authors have developed an algorithm to extract thin ice area in the Sea of Okhotsk from the passive microwave sensor AMSR2 on-board GCOM-W1 satellite. The algorithm uses the brightness temperature scatter plots of AMSR2 19 GHz polarization difference(V–H) vs. 19 GHz V polarization. The results were verified using simultaneously collected MODIS images in the Sea of Okhotsk. The most of the thin ice areas visually identified in the MODIS images were automatically extracted from AMSR2 data using the algorithm.


Author(s):  
Margarita Illarionova ◽  
Margarita Illarionova

The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.


Sign in / Sign up

Export Citation Format

Share Document