Evaluation of the European Fatigue Test Data on Large-Size Welded Tubular Joints for Offshore Structures

1985 ◽  
Author(s):  
D.R.V. van Delft ◽  
C. van Noordhoek ◽  
J. de Back
Author(s):  
Knut O. Ronold ◽  
Stig Wa¨stberg

A recommended practice for design of titanium risers is currently being developed as part of Det Norske Veritas’ series of standards and recommended practices for offshore structures. A recommendation is given herein for characteristic S-N curves for use in design of titanium risers against fatigue failure. As a basis for this recommendation, a set of statistical analyses of available fatigue test data have been carried out. Separate analyses have been carried out for base material and welds. The analysis results have been interpreted with respect to mean S-N curves as well as 97.7% lower tolerance bounds with 95% confidence. Characteristic S-N curves for base material and welds, which are not non-conservative with respect to these tolerance bounds, have been proposed. The paper presents the assumptions, the test data, the statistical analyses and their results, and the proposed characteristic S-N curves. The areas of application of the proposed curves are discussed with a particular view to stress range interval, material grade, weld position, temperature, and defect size.


1985 ◽  
Vol 1985 (157) ◽  
pp. 312-322
Author(s):  
Koichiro Yoshida ◽  
Tetsuji Fukuoka ◽  
Soichi Ito ◽  
Kazuo Enomoto ◽  
Takashi Ohkatsu

Author(s):  
Adrian F. Dier ◽  
Oyvind Hellan

Pushover analyses are increasingly being used by the offshore industry in the assessment, and design, of offshore structures. Traditionally, such analyses are conducted on the basis that the tubular joints are assumed to be rigid. Whereas special finite elements for capturing the buckling behaviour of beam-columns have been in existence for some years, there has been no comparative approach for dealing with tubular joints, that is until the work reported in this paper. The work was carried out under the aegis of a major international Joint Industry Project concerned with the development, testing and calibration of an efficient analysis tool that allows the non-linear behaviour of tubular joints within a space frame structure to be appropriately accounted for. Pushover analysis incorporating proper joint behaviour can now be efficiently conducted with minimal user intervention. The paper describes the algorithms that were developed to simulate the non-linear behaviour of tubular joints under combined axial, in-plane and out-of-plane moment loads, across the full range of the load-deformation response. The (uncoupled) P-δ and M-θ responses were first represented by powerful, yet simple, equations whose coefficients were established by reference to test data. Coupling, for combined loads, was achieved by adapting plasticity theory algorithms. The interaction of chord loads on joint response and how the issue of joints having mixed K/X/Y classification is encompassed in the algorithms is addressed. Ductility limits and unloading behaviour are discussed. Finally, testing of the codified algorithms and calibration against frame test data are mentioned. The results demonstrate that frame response is more accurately captured when joint behaviour is taken into account.


Author(s):  
Torbjo̸rn Lindemark ◽  
Inge Lotsberg ◽  
Joong-Kyoo Kang ◽  
Kwang-Seok Kim ◽  
Narve Oma

Daewoo Shipbuilding & Marine Engineering Co., Ltd. (DSME), StatoilHydro and DNV established a common project to investigate the reason for the difference between calculated fatigue lives and the in-service experience and to assess the fatigue capacity of stiffener web connections subjected mainly to web frame shear stresses. The main objective of the work was to establish fatigue test data and perform numerical analysis of collar plate connections in order to provide improved confidence in analysis methodology for fatigue life assessment. Large scale fatigue tests of different types of connections were carried out to obtain fatigue test data of collar plate connections. Finite element analyses were carried out for comparison with fatigue test data and with measured stresses on the test model. Based on this work recommendations on fatigue design analysis of connections between stiffeners and web frames have been derived. The background for this is presented in this paper.


2017 ◽  
Vol 105 ◽  
pp. 128-143 ◽  
Author(s):  
Davide Leonetti ◽  
Johan Maljaars ◽  
H.H. (Bert) Snijder

Sign in / Sign up

Export Citation Format

Share Document