scholarly journals n-3 Polyunsaturated Fatty Acids Suppress Mitochondrial Translocation to the Immunologic Synapse and Modulate Calcium Signaling in T Cells

2010 ◽  
Vol 184 (10) ◽  
pp. 5865-5873 ◽  
Author(s):  
Rajeshwari Yog ◽  
Rola Barhoumi ◽  
David N. McMurray ◽  
Robert S. Chapkin
2001 ◽  
Vol 131 (9) ◽  
pp. 2364-2369 ◽  
Author(s):  
Carole Triboulot ◽  
Aziz Hichami ◽  
Anne Denys ◽  
Naim A. Khan

1998 ◽  
Vol 143 (3) ◽  
pp. 637-644 ◽  
Author(s):  
Thomas M. Stulnig ◽  
Markus Berger ◽  
Thomas Sigmund ◽  
Daniel Raederstorff ◽  
Hannes Stockinger ◽  
...  

Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects, but the molecular alterations leading to T cell inhibition are not yet elucidated. Signal transduction seems to involve detergent-resistant membrane domains (DRMs) acting as functional rafts within the plasma membrane bilayer with Src family protein tyrosine kinases being attached to their cytoplasmic leaflet. Since DRMs include predominantly saturated fatty acyl moieties, we investigated whether PUFAs could affect T cell signaling by remodeling of DRMs. Jurkat T cells cultured in PUFA-supplemented medium showed a markedly diminished calcium response when stimulated via the transmembrane CD3 complex or glycosyl phosphatidylinositol (GPI)- anchored CD59. Immunofluorescence studies indicated that CD59 but not Src family protein tyrosine kinase Lck remained in a punctate pattern after PUFA enrichment. Analysis of DRMs revealed a marked displacement of Src family kinases (Lck, Fyn) from DRMs derived from PUFA-enriched T cells compared with controls, and the presence of Lck in DRMs strictly correlated with calcium signaling. In contrast, GPI-anchored proteins (CD59, CD48) and ganglioside GM1, both residing in the outer membrane leaflet, remained in the DRM fraction. In conclusion, PUFA enrichment selectively modifies the cytoplasmic layer of DRMs and this alteration could underlie the inhibition of T cell signal transduction by PUFAs.


Allergy ◽  
2013 ◽  
Vol 68 (12) ◽  
pp. 1562-1570 ◽  
Author(s):  
L. W. J. van den Elsen ◽  
L. A. P. M. Meulenbroek ◽  
B. C. A. M. van Esch ◽  
G. A. Hofman ◽  
L. Boon ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Johanna von Gerichten ◽  
Annette L. West ◽  
Nicola A. Irvine ◽  
Elizabeth A. Miles ◽  
Philip C. Calder ◽  
...  

Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


2004 ◽  
Vol 45 (8) ◽  
pp. 1482-1492 ◽  
Author(s):  
Kirsten C. Switzer ◽  
Yang-Yi Fan ◽  
Naisyin Wang ◽  
David N. McMurray ◽  
Robert S. Chapkin

Sign in / Sign up

Export Citation Format

Share Document