scholarly journals Autoimmune Intervention by CD154 Blockade Prevents T Cell Retention and Effector Function in the Target Organ

2001 ◽  
Vol 166 (3) ◽  
pp. 1547-1553 ◽  
Author(s):  
Laurence M. Howard ◽  
Stephen D. Miller
2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Immunity ◽  
2011 ◽  
Vol 34 (5) ◽  
pp. 807-819 ◽  
Author(s):  
Jackson G. Egen ◽  
Antonio Gigliotti Rothfuchs ◽  
Carl G. Feng ◽  
Marcus A. Horwitz ◽  
Alan Sher ◽  
...  

2009 ◽  
Vol 9 (12) ◽  
pp. 2697-2706 ◽  
Author(s):  
P. D. Shah ◽  
E. E. West ◽  
A. B. Whitlock ◽  
J. B. Orens ◽  
J. F. McDyer

2021 ◽  
Author(s):  
Juanjuan Yuan ◽  
Ting Cai ◽  
Xiaojun Zheng ◽  
Yangzi Ren ◽  
Jingwen Qi ◽  
...  

AbstractMetabolic regulation has been proven to play a critical role in T cell antitumor immunity. However, cholesterol metabolism as a key component of this regulation remains largely unexplored. Herein, we found that the low-density lipoprotein receptor (LDLR), which has been previously identified as a transporter for cholesterol, plays a pivotal role in regulating CD8+ T cell antitumor activity. Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion, we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling, thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs). Furthermore, we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cell-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs. Moreover, genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression. While previously established as a hypercholesterolemia target, this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well.


2021 ◽  
Author(s):  
Mun Kyung Hwang ◽  
Anlai Wang ◽  
Zhili Song ◽  
Shujia Dai ◽  
Bailin Zhang ◽  
...  

2021 ◽  
pp. ji2001048
Author(s):  
Lauren J. Howson ◽  
Jasmine Li ◽  
Anouk von Borstel ◽  
Adele Barugahare ◽  
Jeffrey Y. W. Mak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document