scholarly journals Ongoing In Vivo Immunoglobulin Class Switch DNA Recombination in Chronic Lymphocytic Leukemia B Cells

2002 ◽  
Vol 169 (11) ◽  
pp. 6594-6603 ◽  
Author(s):  
Andrea Cerutti ◽  
Hong Zan ◽  
Edmund C. Kim ◽  
Shefali Shah ◽  
Elaine J. Schattner ◽  
...  
2021 ◽  
Author(s):  
Yijiang Xu ◽  
Hang Zhou ◽  
Ginell Post ◽  
Hong Zan ◽  
Paolo Casali

While the biology of IgD begins to be better understood, the mechanism of expression of this phylogenetically old and highly conserved Ig class remains unknown. In B cells, IgD is expressed together with IgM as transmembrane receptor for antigen through alternative splicing of long primary VHDJH-Cμ-s-m-Cδ-s-m RNA, which also underpins the secreted form of IgD. IgD is also expressed through class switch DNA recombination (CSR), as initiated by AID-mediated double-strand DNA breaks (DSBs) in Sμ and σδ and resolution of such DSBs by a yet unknown alternative endjoining (A-EJ) mechanism. This synapses Sμ with σδ region DSB resected ends leading to insertion of extensive S-S junction microhomologies, unlike the Ku70/Ku86-dependent NHEJ which resolves DSB blunt ends in CSR to IgG, IgA and IgE with little or no microhomologies. We previously demonstrated a novel role of DNA annealing homologous recombination Rad52 protein in 'short-range' microhomology-mediated synapsis of intra-Sδ region DSBs. This led us to hypothesize that Rad52 is also involved in the short-range microhomology-mediated A-EJ recombination of Sμ with σδ. We found that induction of IgD CSR by T-dependent or T-independent stimuli downregulated Zfp318 (the suppressor of Cδ-s-m transcription termination), promoted Rad52 phosphorylation, recruitment of Rad52 to Sμ and σδ leading to Sμ-σδ recombination with extensive microhomologies, VHDJH-Cδs transcription and sustained IgD secretion. Rad52 ablation in mouse Rad52-/- B cells aborted IgD CSR in vitro and in vivo and dampened the specific IgD antibody response to OVA. Further, Rad52 knockdown in human B cells virtually abrogated IgD CSR. Finally, Rad52 phosphorylation was associated with high levels IgD CSR and anti-nuclear IgD autoantibodies in lupus-prone mice and lupus patients. Thus, Rad52 mediates CSR to IgD by synapsing Sμ-σδ resected DSB ends through microhomology-mediated A-EJ and in concert with Zfp318 modulation. This is a previously unrecognized, critical and dedicated role of Rad52 in mammalian DNA repair.


2002 ◽  
Vol 196 (5) ◽  
pp. 629-639 ◽  
Author(s):  
Carmela Gurrieri ◽  
Peter McGuire ◽  
Hong Zan ◽  
Xiao-Jie Yan ◽  
Andrea Cerutti ◽  
...  

Chronic lymphocytic leukemia (CLL) arises from the clonal expansion of a CD5+ B lymphocyte that is thought not to undergo intraclonal diversification. Using VHDJH cDNA single strand conformation polymorphism analyses, we detected intraclonal mobility variants in 11 of 18 CLL cases. cDNA sequence analyses indicated that these variants represented unique point-mutations (1–35/patient). In nine cases, these mutations were unique to individual submembers of the CLL clone, although in two cases they occurred in a large percentage of the clonal submembers and genealogical trees could be identified. The diversification process responsible for these changes led to single nucleotide changes that favored transitions over transversions, but did not target A nucleotides and did not have the replacement/silent nucleotide change characteristics of antigen-selected B cells. Intraclonal diversification did not correlate with the original mutational load of an individual CLL case in that diversification was as frequent in CLL cells with little or no somatic mutations as in those with considerable mutations. Finally, CLL B cells that did not exhibit intraclonal diversification in vivo could be induced to mutate their VHDJH genes in vitro after stimulation. These data indicate that a somatic mutation mechanism remains functional in CLL cells and could play a role in the evolution of the clone.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3593-3593
Author(s):  
Sonal C. Temburni ◽  
Ryon M. Andersen ◽  
Luke Janson ◽  
Xiao-Jie Yan ◽  
Barbara Sherry ◽  
...  

Abstract Abstract 3593 Unlike other hematologic disorders, chronic lymphocytic leukemia(CLL) exhibits remarkable heterogeneity in the rates of disease progression among cases. CLL cells survive by receiving signals from the microenvironment via various receptors: B-cell antigen receptor (BCR), Toll-like receptors (TLRs) and cytokine and chemokine receptors. We previously reported that CLL clones with somatically mutated IGHVs and high (≥30%) percentage of CD38 expressing cells have the highest percentage of CCR4-expressing cells. To further explore the functional contribution of the CCR4:CCL17 axis in CLL, we studied CCL17-induced chemotactic behavior in 16 CLL cases. In transwell cultures we observed a bimodal migratory response to CCL17 at 2 doses in a dose range of 0.78– 25ng/ml, in ~60% of cases; the remaining cases showed maximal migration at a single dose (1.56 or 3.12ng/ml). A comparison of phenotypes of the migrated and non-migrated cell populations was undertaken in 10 cases, analyzing CXCR3, CXCR4, CCR4 and CCR7 that are involved in homing of cells to sites favoring growth, and CD31, CD38 and CD69, activation related molecules. The migrated cells consistently showed significantly higher percentages and densities of CD38 expression than the non-migrated cells suggesting a role for CD38 in the CCR4-mediated downstream pathway. CCR4 ligand, CCL17, is constitutively expressed in the thymus and is produced by dendritic cells, endothelial cells, keratinocytes and fibroblasts, whereas CCL22 is produced by tumor cells and the tumor microenvironment. Serum levels of both these ligands in untreated patients were quantified by ELISA. CCL17 levels ranged between 45-1, 229 pg/ml in U-CLL cases (n=23) and between 43-1, 418 pg/ml in M-CLL cases (n=30). CCL22 levels ranged between 121-5, 497 pg/ml in U-CLL cases (n=23) and 409-5, 502 pg/ml in M-CLL cases (n=30). The percentages of CCR4- expressing B cells directly correlated with percentages of T cells expressing CCR4 in individual cases, whereas they inversely correlated with both, serum levels of CCL17 (p< 0.01) and CCL22 (p< 0.05). CCL17 produced by DCs in peripheral organs may exert an accessory role in BCR- and TLR-9-mediated immune responses in B cells. We therefore tested if CCL17 supported BCR- and TLR-mediated proliferative responses in a cohort of 31 (16 U-CLL and 15M-CLL) CLL cases. CCL17 augmented BCR-mediated B-cell proliferation in 9/16 (56%) U-CLL cases, but only in 3/15 (20%) M-CLL cases. On the other hand, CCL17 showed an additive effect in promoting TLR-9-mediated cell proliferation in 13/15 (87%) M-CLL cases at a dose of 2ng/nl (approximating that detected in serum); it also augmented TLR-9 mediated B cell proliferation in 6/16 U-CLL cases but at a 5-fold or higher dose (10-25 ng/ml). In a subset of this cohort (8 cases) CCL17-induced modulation of molecules involved in the apoptotic process was studied. We found upregulation of anti-apoptotic proteins Mcl-1 and Bcl2 and down-regulation of pro-apoptotic molecules Bim, PUMA, and Bid in 5 of these cases. The pro-survival effects of CCL17 were partially abrogated by the blocking anti-CCR4 mAb (1G1). Taken together, these findings suggest that CCL17 plays a role in modulating TLR-9-mediated signaling and migration in CLL. Therefore, inhibition of CCR4:CCL17 interaction in vivo represents a novel therapy by preventing migration of CLL cells towards an environment that promotes their survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 984-984
Author(s):  
Bing CUi ◽  
George F. Widhopf ◽  
Jian Yu ◽  
Daniel Martinez ◽  
Esther Avery ◽  
...  

Abstract Abstract 984 ROR1 is an orphan receptor tyrosine kinase that is expressed on leukemia cells of patients with chronic lymphocytic leukemia (CLL), but not on most adult tissues of healthy adults, including CD5+ B cells. To generate anti-ROR1 antibodies, we immunized mice using different strategies employing vaccines comprised of recombinant ROR1 protein, polynucleotide-ROR1 vaccines and CD154 genetic adjuvants, or replication-defective adenovirus vectors encoding ROR1 and CD154. We extirpated the spleens of animals that developed high-titer serum anti-ROR1 antibodies and used these to generate monoclonal-antibody-(mAb)-producing hybridomas or antibody phage-display libraries that subsequently were screened for ROR1-binding. Over 70 unique mAbs were generated that each bound the extra-cellular domain of native ROR1. Most mAbs recognized an epitope(s) within the ROR1 Ig-like domain, which appears to represent the immune dominant epitope. Other mAb recognized epitopes within the conserved ROR1 Kringle domain. One mAb (UC D10-001) had distinctive binding to an intradomain epitope of human ROR1 (hROR1). UC D10-001 was the only mAb we found directly cytotoxic for hROR1-expressing leukemia cells cultured in media without complement for 6 hours. We found that UC D10-001 could induce significant reductions in basal levels of phosphorylated AKT in hROR1-expressing leukemia cells. Moreover, UC D10-001 significantly decreased the basal levels of phosphorylated AKT in freshly isolated human CLL cells (N=4) to levels comparable to that observed in co-cultures containing 10 mM LY294002, a broad-spectrum inhibitor of PI3K. We examined whether this mAb had cytotoxic activity for leukemia cell in vivo. For this we examined whether we could inhibit the adoptive transfer of human-ROR1-expressing leukemia cells to young, syngeneic recipient mice made transgenic for human ROR1 under control of a B-cell specific promoter. Cohorts of 5 animals per group were each given intravenous injections of antibody at a dose of at 10 mg/kg. Each cohort was treated with UC D10-001, control IgG, or 4A5, an anti-ROR1 mAb specific for a non-cross-reactive epitope located in the Ig-like domain of ROR1. Each animal received an intravenous injection of 5 × 105 ROR1-expressing leukemia cells and then was assessed weekly for circulating leukemia cells by flow cytometry. UC D10-001, but not control IgG or 4A5, significantly inhibited engraftment of the ROR1+ leukemia. Four weeks after adoptive transfer, animals treated with UC D10-001 had a 10-fold lower median number of leukemia B cells in the blood than animals treated with control IgG or 4A5. We also tested UC D10-001 for its capacity to induce clearance of human ROR1+ CLL cells engrafted into the peritoneal cavity of Rag-2−/−/γc−/− immune deficient mice. Each of these mice received intraperitoneal injections of equal numbers of human ROR1+ CLL cells prior to receiving D10-001, control IgG, or 4A5, each at 10 mg/kg. These animals were sacrificed seven days later and the human leukemia cells were harvested via peritoneal lavage. In mice treated with UC D10-001 we harvested an average of only 6 × 104 ± 3 × 104 CLL cells. This number of cells was significantly less than the average number of CLL cells harvested from control IgG or 4A5-treated mice (8 × 105 ± 4 × 105 or 7 × 105 ± 2 × 105, respectively, p <0.01). These studies indicate that the anti-ROR1 mAb UC D10-001 can be directly cytotoxic for ROR1-expressing leukemia cells in vitro and in vivo, a property that apparently is unique to this mAb among other anti-ROR1 mAbs. Because of the restricted expression of ROR1 on leukemia cells and the distinctive properties of this mAb, we propose that UC D10-001 might have potential utility in the treatment of patients with CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3886-3886
Author(s):  
Eva Hellqvist ◽  
Christina C.N. Wu ◽  
George F. Widhopf ◽  
Alice Shih ◽  
Rommel Tawatao ◽  
...  

Abstract Abstract 3886 ROR1 is a receptor-tyrosine kinase like protein expressed on the surface of chronic lymphocytic leukemia (CLL) B cells, but not on normal mature B cells, suggesting that it may be a promising therapeutic target. We have generated a chimeric monoclonal antibody (mAb), UC99961, which binds to an intradomain epitope of human ROR1 (hROR1). UC99961 binds the same epitope as the murine anti-hROR1 mAb, UC D10–001, which has direct cytotoxic effects on hROR1 positive CLL cells. In this study we investigated the in-vivo anti-leukemic activity and tolerability of UC99961 on ROR1+ primary patient CLL cells and human cord-blood-derived B cells and T cells, respectively. For these studies, immunodeficient RAG2−/−γc−/− neonatal mice were reconstituted with a human immune system by intrahepatic xenotransplantation of 1×105 CD34+ human cord blood progenitor cells. Eight to ten weeks post transplantation, cord blood engraftment was verified by peripheral blood screening, at which point the mice received an intraperitoneal transplantation of 2×107 primary patient ROR1+ CLL cells. Twenty-four hours after CLL transplantation, five animals per group were each treated with a single intraperitoneal injection (10mg/kg) of UC99961, UC D10–001, or control IgG. Seven days following mAb treatment, the animals were sacrificed and marrow, spleen, thymus, and peritoneal lavage samples were collected and analyzed by flow cytometry for CLL cells, as well as normal cord-blood-derived B cells and T cells. To confirm mAb administration according to the study design, serial residual ROR1 plasma antibody levels were determined by ELISA. Results from three consecutive experiments using leukemia cells from two different patients showed that the vast majority of CLL B cells remained in the peritoneal cavity of the animals and did not migrate to other hematopoietic organs. Both anti-hROR1 mAbs UC99961 and UC D10–001 significantly reduced the average number of harvested CLL cells in the peritoneal lavage compared to control IgG (99% and 71% reduction respectively), while cord-blood-derived T cells (CD45+3+) in thymus remained unaffected by the mAb treatment. For the majority of cord-blood-derived B cells in marrow and spleen, no significant reduction could be observed after UC99961 or UC D10–001 mAb treatment. A small CD19+ROR1+CD34− cord-blood-derived B cell population was identified in marrow and spleen that was reduced after UC99961 and UC D10–001 mAb treatment. This study demonstrates that the anti-human ROR1 specific mAbs have in vivo anti-leukemic activity with minimal impact on human cord-blood-derived B cells and T cells. From these results, UC99961 appears to be an excellent candidate antibody for future clinical studies for patients with CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1743-1743
Author(s):  
Chi-Ling Chiang ◽  
Frank W Frissora ◽  
Zhiliang Xie ◽  
Xiaomeng Huang ◽  
Rajeswaran Mani ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL), characterized by accumulation of CD5+CD19+sIgM+ B lymphocytes in peripheral blood and lymphoid organs, is classified into indolent and aggressive forms. Patients with indolent CLL generally survive 5 to 10 years and do not require treatment until severe symptoms, while those with aggressive CLL show resistant to standard treatment and survive less than 24 months. While emerging B cell antigen receptor directed therapies are promising, resistance to such therapies pose problems warranting novel therapeutic approaches. MicroRNA (miR) profiling revealed lower expression of miR-29b in aggressive CLL associated with survival, drug resistance and poor prognosis via its up-regulation of anti-apoptotic proteins myeloid leukemia cell differentiation protein 1 (Mcl1) and oncogenic T-cell leukemia 1 (Tcl1). Thus, specific overexpression of miR-29b in B-CLL cells could be a potential therapy for aggressive CLL patients. Despite the promise, short circulation half-life, limited cellular uptake and off-target effects on non-desirable tissues pose a challenge for miR-based therapies. To promote efficiency and specificity of miR-29b delivery, we developed neutral immunonanoparticles with selectivity to CLL via targeting tumor antigen ROR1, which is expressed in over 95% of CLL but not normal B cells. We optimized a novel 2A2-immunoliposome (2A2-ILP) recognizing surface ROR1 on primary CLL cell to promote internalization and miR-29b uptake (n=6, p=0.042*). About 20-fold increased uptake of miR-29b was achieved with 2A2-ILP-miR-29b formulation compared to control. Further ROR1 targeted delivery of miR29b resulted in significant downregulation of DNMT1 and DNMT3a mRNA and protein (n=3, DNMT1: p= 0.0115*; DNMT3a: p=0.0231*, SP1; p=0.0031**) in primary CLL cells and a human CLL cell line OSU-CLL. Consistent with the downregulation of DNMTs, decreased global DNA methylation was observed in OSU-CLL cell line one week post- treatment with 2A2-ILP-miR-29b (n=3, p=0.0003***). To further study the in vivo ROR1-targeting efficiency of 2A2-ILP-miR-29b, we used our recently described Eµ-hROR1x Tcl1 CLL mouse model that develops CLL like disease with human ROR1 antigen in leukemic CD19+CD5+ B cells. Using hROR1+CD19+CD5+ leukemic cell engraftment model, we showed significant in-vivo efficacy of ROR1-ILP-miR-29b formulation associated with a) decreased number of circulating leukemic B220+CD5+ cells b) reduced splenomegaly (p=0.0461*, 2A2-29b: n=9; PBS: n=8) c) with extended survival (p=0.0075**, 2A2-29b: n=9; IgG-29b: n=7; 2A2-SC: n=7; PBS: n=8). In summary, 2A2-ILP effectively delivered functional miR-29b, resulting in downregulation of DNMT1 and DNMT3a, reduction of hypermethylation and anti-leukemic activity. Ongoing studies are aimed at understanding miR-29b mediated in-vivo methylome reprograming using our novel hROR1xTcl1 transgenic mouse model and ROR1-targeted miR-29b delivery formulation. Figure 1. Figure 1. Disclosures Byrd: Acerta Pharma BV: Research Funding.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174195
Author(s):  
Tonika Lam ◽  
Lisa M. Thomas ◽  
Clayton A. White ◽  
Guideng Li ◽  
Egest J. Pone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document