scholarly journals Evidence for a Ligand-Mediated Positive Selection Signal in Differentiation to a Mature B Cell

2003 ◽  
Vol 171 (12) ◽  
pp. 6381-6388 ◽  
Author(s):  
Hongsheng Wang ◽  
Stephen H. Clarke
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fan Li ◽  
Yunyun Lv ◽  
Zhengyong Wen ◽  
Chao Bian ◽  
Xinhui Zhang ◽  
...  

Abstract Background Although almost all extant spider species live in terrestrial environments, a few species live fully submerged in freshwater or seawater. The intertidal spiders (genus Desis) built silk nests within coral crevices can survive submerged in high tides. The diving bell spider, Argyroneta aquatica, resides in a similar dynamic environment but exclusively in freshwater. Given the pivotal role played by mitochondria in supplying most energy for physiological activity via oxidative phosphorylation and the environment, herein we sequenced the complete mitogenome of Desis jiaxiangi to investigate the adaptive evolution of the aquatic spider mitogenomes and the evolution of spiders. Results We assembled a complete mitogenome of the intertidal spider Desis jiaxiangi and performed comparative mitochondrial analyses of data set comprising of Desis jiaxiangi and other 45 previously published spider mitogenome sequences, including that of Argyroneta aquatica. We found a unique transposition of trnL2 and trnN genes in Desis jiaxiangi. Our robust phylogenetic topology clearly deciphered the evolutionary relationships between Desis jiaxiangi and Argyroneta aquatica as well as other spiders. We dated the divergence of Desis jiaxiangi and Argyroneta aquatica to the late Cretaceous at ~ 98 Ma. Our selection analyses detected a positive selection signal in the nd4 gene of the aquatic branch comprising both Desis jiaxiangi and Argyroneta aquatica. Surprisingly, Pirata subpiraticus, Hypochilus thorelli, and Argyroneta aquatica each had a higher Ka/Ks value in the 13 PCGs dataset among 46 taxa with complete mitogenomes, and these three species also showed positive selection signal in the nd6 gene. Conclusions Our finding of the unique transposition of trnL2 and trnN genes indicates that these genes may have experienced rearrangements in the history of intertidal spider evolution. The positive selection signals in the nd4 and nd6 genes might enable a better understanding of the spider metabolic adaptations in relation to different environments. Our construction of a novel mitogenome for the intertidal spider thus sheds light on the evolutionary history of spiders and their mitogenomes.


2015 ◽  
Vol 212 (10) ◽  
pp. 1663-1677 ◽  
Author(s):  
Nikita S. Kolhatkar ◽  
Archana Brahmandam ◽  
Christopher D. Thouvenel ◽  
Shirly Becker-Herman ◽  
Holly M. Jacobs ◽  
...  

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)–deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell–intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Amparo Toboso-Navasa ◽  
Arief Gunawan ◽  
Giulia Morlino ◽  
Rinako Nakagawa ◽  
Andrea Taddei ◽  
...  

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC–MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC–MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC–MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.


Immunity ◽  
2005 ◽  
Vol 23 (3) ◽  
pp. 297-308 ◽  
Author(s):  
Lijun Wen ◽  
Joni Brill-Dashoff ◽  
Susan A. Shinton ◽  
Masanao Asano ◽  
Richard R. Hardy ◽  
...  

2004 ◽  
Vol 197 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Emmanuelle Gaudin ◽  
Manuela Rosado ◽  
Fabien Agenes ◽  
Angela Mclean ◽  
Antonio A. Freitas

2006 ◽  
Vol 176 (12) ◽  
pp. 7402-7411 ◽  
Author(s):  
Helen Ferry ◽  
Tanya L. Crockford ◽  
Janson C. H. Leung ◽  
Richard J. Cornall

Sign in / Sign up

Export Citation Format

Share Document