scholarly journals Human Follicular Dendritic Cells Express Prostacyclin Synthase: A Novel Mechanism to Control T Cell Numbers in the Germinal Center

2005 ◽  
Vol 175 (3) ◽  
pp. 1658-1664 ◽  
Author(s):  
In Yong Lee ◽  
Eun-Mi Ko ◽  
Sang-Hyun Kim ◽  
Doo-Il Jeoung ◽  
Jongseon Choe
Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Anthony W. Butch ◽  
Kathleen A. Kelly ◽  
Michael S. Willbanks ◽  
Xinwen Yu

Follicular dendritic cells (FDCs) reside within germinal centers of secondary lymphoid tissue where they play a critical role in antigen-driven immune responses. FDCs express numerous adhesion molecules that facilitate cellular interactions with B and T cells within the germinal center microenvironment. Although human FDCs have been shown to influence B-cell development, very little is known about the ability of FDCs to regulate T-cell responses. To investigate this functional aspect of FDCs, highly enriched preparations were isolated by magnetic cell separation using the FDC-restricted monoclonal antibody HJ2. We found that isolated human FDCs inhibited proliferation of both autologous and allogeneic T cells, and were dependent on the number of FDCs present. Inhibition by FDCs was observed using two serologically distinct superantigens at multiple concentrations (Staphylococcus enterotoxin A and B). In contrast, B cells failed to inhibit, and often augmented superantigen-induced T-cell proliferation. Antibody-blocking studies showed that CD54 and CD106 were involved in the ability of FDC to inhibit T-cell proliferative responses. When FDCs and T cells were separated by a semipermeable membrane, the inhibitory effect was partially abrogated, demonstrating that in addition to cell-cell interactions, a soluble factor(s) was also involved in the process. The addition of indomethicin to cultures improved the proliferative response in the presence of FDCs, indicating that inhibition was mediated, in part, by prostaglandins. These results indicate that FDCs regulate T-cell proliferation by two molecular mechanisms and that FDC:T-cell interactions may play a pivotal role in germinal center development.


2000 ◽  
Vol 192 (7) ◽  
pp. 931-942 ◽  
Author(s):  
Lynn G. Hannum ◽  
Ann M. Haberman ◽  
Shannon M. Anderson ◽  
Mark J. Shlomchik

Serum antibody (Ab) can play several roles during B cell immune responses. Among these is to promote the deposition of immune complexes (ICs) on follicular dendritic cells (FDCs). ICs on FDCs are generally thought to be critical for normal germinal center (GC) formation and the development and selection of memory B cells. However, it has been very difficult to test these ideas. To determine directly whether FDC-bound complexes do indeed function in these roles, we have developed a transgenic (Tg) mouse in which all B lymphocytes produce only the membrane-bound form of immunoglobulin M. Immune Tg mice have 10,000-fold less specific Ab than wild-type mice and lack detectable ICs on FDCs. Nonetheless, primary immune responses and the GC reaction in these mice are robust, suggesting that ICs on FDCs do not play critical roles in immune response initiation and GC formation. Moreover, as indicated by the presence and pattern of somatic mutations, memory cell formation and selection appear normal in these IC-deficient GCs.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 4989-4997 ◽  
Author(s):  
Marc Bajénoff ◽  
Ronald N. Germain

Abstract Afferent lymph is transported throughout lymph nodes (LNs) by the conduit system. Whereas this conduit network is dense in the T-cell zone, it is sparse in B-cell follicles. In this study, we show that this differential organization emerges during lymph node development. Neonatal LNs lack B follicles, but have a developed T-cell zone and a dense conduit network. As new T and B cells enter the developing LN, the conduit network density is maintained in the T, but not the B zone, leading to a profound remodeling of the follicular network that nevertheless maintains its connectivity. In adults, the residual follicular conduits transport soluble antigen to deep regions, where follicular dendritic cells are abundant and appear to replace the fibroblastic reticular cells that enwrap conduits in the T zone. This strategic location correlates with the capacity of the follicular dendritic cells to capture antigen even in the absence of antigen-specific antibodies. Together, these results describe how the stromal organization of the T and B regions of LNs diverges during development, giving rise to distinct antigen transport and delivery modes in the 2 compartments.


2001 ◽  
Vol 166 (1) ◽  
pp. 330-337 ◽  
Author(s):  
Yang Wang ◽  
Jing Wang ◽  
Yonglian Sun ◽  
Qiang Wu ◽  
Yang-Xin Fu

2013 ◽  
Vol 55 (3-4) ◽  
pp. 418-423 ◽  
Author(s):  
Jini Kim ◽  
Seungkoo Lee ◽  
Young-Myeong Kim ◽  
Doo-Il Jeoung ◽  
Jongseon Choe

Sign in / Sign up

Export Citation Format

Share Document