scholarly journals Cutting Edge: Tissue Antigen Expression Levels Fine-Tune T Cell Differentiation Decisions In Vivo

2020 ◽  
Vol 205 (10) ◽  
pp. 2577-2582
Author(s):  
Douglas F. Pinheiro ◽  
Antal B. Szenes-Nagy ◽  
Megan M. Maurano ◽  
Melanie Lietzenmayer ◽  
Maria M. Klicznik ◽  
...  
2021 ◽  
Author(s):  
Helena Strand Clemmensen ◽  
Jean-Yves Dube ◽  
Fiona McIntosh ◽  
Ida Rosenkrands ◽  
Gregers Jungersen ◽  
...  

AbstractNew vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to IFN-γ or nutrient/oxygen deprivation of in vitro infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analysed their corresponding CD4 T cell phenotype and vaccine-protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination and, against the overexpressing strain, vaccination with MPT70 conferred similar protection as ESAT-6. Together our data indicate that high in vivo antigen expression drives T cells towards terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less-differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune-balance in favor of the host.ImportanceTuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current COVID-19 pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunisation with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Helena Strand Clemmensen ◽  
Jean-Yves Dube ◽  
Fiona McIntosh ◽  
Ida Rosenkrands ◽  
Gregers Jungersen ◽  
...  

ABSTRACT New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host. IMPORTANCE Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunization with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Masahiro Kiuchi ◽  
Atsushi Onodera ◽  
Kota Kokubo ◽  
Tomomi Ichikawa ◽  
Yuki Morimoto ◽  
...  

Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2819-2826 ◽  
Author(s):  
Rosa Sacedón ◽  
Angeles Vicente ◽  
Alberto Varas ◽  
Eva Jiménez ◽  
Juan José Muñoz ◽  
...  

In the present work, we demonstrated that both fetal liver and thymic T-cell precursors express glucocorticoid receptors (GRs) indirectly suggesting a role for glucocorticoids (GCs) in the earliest events of T-cell differentiation. To evaluate this issue, we analyzed the thymic ontogeny in the progeny of adrenalectomized pregnant rats (Adx fetuses), an in vivo experimental model, which ensures the absence of circulating GCs until the establishment of the fetal hypothalamus-pituitary-adrenal (HPA) axis. In the absence of maternal GCs, T-cell development was significantly accelerated, the process being reversed by in vivo GC replacement. Mature single positive thymocytes (both CD4 and CD8) appeared in 16-day old fetal Adx thymus when in the control fetuses, most thymocytes still remained in the double-negative (DN) CD4−CD8− cell compartment. In addition, emigration of T-cell receptor (TcR)β positive cells to the spleen also occurred earlier in Adx fetuses than in control ones. In vitro recolonization of cultured deoxiguanosine-treated mouse fetal thymus lobes with 13-day-old fetal liver cell suspensions from both Adx and control fetuses demonstrated changes in the developmental capabilities of fetal liver T-cell precursors from embryos grown in the absence of GCs. Furthermore, a precocious lymphoid colonization of the thymic primordium from Adx fetuses was evidenced by ultrastructural analysis of both Adx and Sham early thymus. Both findings accounted for the accelerated T-cell differentiation observed in Adx fetuses. Together, these results support a role for GCs not only in the thymic cell death, but also in the early steps of T-cell differentiation.


2006 ◽  
Vol 177 (11) ◽  
pp. 7515-7519 ◽  
Author(s):  
Naofumi Takemoto ◽  
Andrew M. Intlekofer ◽  
John T. Northrup ◽  
E. John Wherry ◽  
Steven L. Reiner

2014 ◽  
Vol 193 (4) ◽  
pp. 1847-1854 ◽  
Author(s):  
Salix Boulet ◽  
Jean-François Daudelin ◽  
Nathalie Labrecque

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 189-189
Author(s):  
R. Anthony Barnitz ◽  
Makoto Kurachi ◽  
Madeleine E. Lemieux ◽  
Nir Yosef ◽  
Michael A. DiIorio ◽  
...  

Abstract Following activation by antigen, costimulation, and inflammation, naïve CD8+ T cells initiate a program of clonal expansion and differentiation resulting in wide-spread changes in expression of genes involved in cell-cycle, metabolism, effector function, apoptosis, and homing. Although, several key transcription factors (TFs) have been shown to be important in effector CD8+ T cell differentiation, the precise transcriptional regulation of this differentiation program remains poorly understood. The AP-1 family member BATF plays an important role in regulating differentiation and function in CD4+ Th17 cells, CD4+ follicular helper T cells, and in Ig class switching in B cells. We now show that BATF is also required for effector CD8+ T cell differentiation and regulates a core program of genes involved in effector differentiation. We found that BATF expression is rapidly up-regulated during effector CD8+ T cell differentiation in the mouse model of lymphocytic choriomeningitis virus (LCMV) infection. To examine the role of BATF in effector differentiation, we studied congenically distinct wild type (WT) and BATF knockout (KO) naïve P14 TCR transgenic CD8+ T cells co- transferred into a WT host. Upon infection, the BATF KO cells exhibited a profound, cell-intrinsic defect in effector CD8+ T cell differentiation, with a ∼400-fold decrease in peak number of effector cells. BATF KO effectors showed sustained activation and increased cell death by the mid-expansion phase of the immune response. To address the question of how loss of BATF causes such a severely diminished antigen-specific response, we profiled the binding sites of BATF throughout the genome by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) in primary CD8+ effector cells. We found that BATF bound to regulatory regions in many genes critical for effector differentiation, including transcription factors (e.g. Tbx21, Eomes, Prdm1), genes involved in cytokine signaling (e.g. Il12rb2, Il2ra), homing (e.g. Sell, Selp, Ccr9), effector function (e.g. Gzmb, Ifng, Il2), apoptosis (e.g. Bcl2, Bcl2l1, Mcl1), and T cell activation (e.g. Ctla4, Cd247, Tnfrsf4), suggesting a major role for BATF in effector CD8+ T cell differentiation. Indeed, we found that genes bound by BATF were highly significantly overrepresented among genes that changed as a result of naïve CD8+ T cells differentiating into effectors in vivo (P = 10-27). Comparison of gene expression in in vitro WT and BATF KO effectors confirmed that BATF bound genes were perturbed by BATF loss of function. Analysis of the kinetics of gene expression during the first 72 hours of effector differentiation showed that loss of BATF perturbed the temporal sequence of expression of critical transcription factors, such as T-bet and Eomes, and resulted in inappropriately early cytokine expression. This suggests that BATF may be required to coordinate the earliest events in CD8+ T cell effector differentiation. To test this hypothesis, we used in vivo CFSE tracking to follow the early CD8+ T cell response during LCMV infection. We found that while BATF KO CD8+ T cells initiate cell division, there was a dramatic collapse in the ability to sustain proliferation and differentiation as early as day 3 post-infection. These results indicate that BATF ensures the orderly progression of a program of genes required by effector cells, restraining the expression of some and promoting the expression of others. More broadly, our results suggest that BATF may provide a common regulatory infrastructure for the development of effector cells in all T cell lineages. Disclosures: Wherry: Genentech: Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document