Absence of ERAP1 in B Cells Increases Susceptibility to Central Nervous System Autoimmunity, Alters B Cell Biology, and Mechanistically Explains Genetic Associations between ERAP1 and Multiple Sclerosis

2021 ◽  
pp. ji2100813
Author(s):  
Patrick O'Connell ◽  
Maja K. Blake ◽  
Sarah Godbehere ◽  
Yasser A. Aldhamen ◽  
Andrea Amalfitano
2020 ◽  
Vol 117 (35) ◽  
pp. 21512-21518 ◽  
Author(s):  
Stefanie Kuerten ◽  
Tobias V. Lanz ◽  
Nithya Lingampalli ◽  
Lauren J. Lahey ◽  
Christoph Kleinschnitz ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.


2020 ◽  
Author(s):  
Haoyu Ruan ◽  
Zhe Wang ◽  
Yue Zhai ◽  
Ying Xu ◽  
Linyu Pi ◽  
...  

AbstractDiffuse large B-cell lymphoma (DLBCL) is the predominant type of central nervous system lymphoma (CNSL) including primary CNSL and secondary CNSL. Diffuse large B cells in cerebrospinal fluid (CSF-DLBCs) have offered great promise for the diagnostics and therapeutics of CNSL leptomeningeal involvement. To explore the distinct phenotypic states of CSF-DLBCs, we analyzed the transcriptomes of 902 CSF-DLBCs from six CNSL-DLBCL patients using single-cell RNA sequencing technology. We defined CSF-DLBCs based on abundant expression of B-cell markers, as well as the enrichment of cell proliferation and energy metabolism pathways. CSF-DLBCs within individual patients exhibited monoclonality with similar variable region of light chains (VL) expression. It is noteworthy that we observed some CSF-DLBCs have double classes of VL (lambda and kappa) transcripts. We identified substantial heterogeneity in CSF-DLBCs, and found significantly greater among-patient heterogeneity compared to among-cell heterogeneity within a given patient. The transcriptional heterogeneity across CSF-DLBCs is manifested in cell cycle state and cancer-testis antigens expression. Our results will provide insight into the mechanism research and new diagnostic direction of CNSL-DLBCL leptomeningeal involvement.


2011 ◽  
Vol 1 (3) ◽  
pp. 133-136 ◽  
Author(s):  
Mark K. Lyons ◽  
Orland K. Boucher ◽  
Barry D. Birch ◽  
Naresh P. Patel

2019 ◽  
Vol 29 (5) ◽  
pp. 640-657 ◽  
Author(s):  
Jan Traub ◽  
Sarah Traffehn ◽  
Jasmin Ochs ◽  
Silke Häusser‐Kinzel ◽  
Schirin Stephan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ide Smets ◽  
Teresa Prezzemolo ◽  
Maya Imbrechts ◽  
Klara Mallants ◽  
Tania Mitera ◽  
...  

Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.


2015 ◽  
Vol 72 (12) ◽  
pp. 1407 ◽  
Author(s):  
Mahboobeh Fereidan-Esfahani ◽  
Wolfgang Brück ◽  
Martin S. Weber

2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Jeffrey R. Atkinson ◽  
Cornelia C. Bergmann

ABSTRACT B cell subsets with phenotypes characteristic of naive, non-isotype-switched, memory (Bmem) cells and antibody-secreting cells (ASC) accumulate in various models of central nervous system (CNS) inflammation, including viral encephalomyelitis. During neurotropic coronavirus JHMV infection, infiltration of protective ASC occurs after T cell-mediated viral control and is preceded by accumulation of non-isotype-switched IgD+ and IgM+ B cells. However, the contribution of peripheral activation events in cervical lymph nodes (CLN) to driving humoral immune responses in the infected CNS is poorly defined. CD19, a signaling component of the B cell receptor complex, is one of multiple regulators driving B cell differentiation and germinal center (GC) formation by lowering the threshold of antigen-driven activation. JHMV-infected CD19−/− mice were thus used to determine how CD19 affects CNS recruitment of B cell subsets. Early polyclonal ASC expansion, GC formation, and virus-specific ASC were all significantly impaired in CLN of CD19−/− mice compared to wild-type (WT) mice, consistent with lower and unsustained virus-specific serum antibody (Ab). ASC were also significantly reduced in the CNS, resulting in increased infectious virus during persistence. Nevertheless, CD19 deficiency did not affect early CNS IgD+ B cell accumulation. The results support the notion that CD19-independent factors drive early B cell mobilization and recruitment to the infected CNS, while delayed accumulation of virus-specific, isotype-switched ASC requires CD19-dependent GC formation in CLN. CD19 is thus essential for both sustained serum Ab and protective local Ab within the CNS following JHMV encephalomyelitis. IMPORTANCE CD19 activation is known to promote GC formation and to sustain serum Ab responses following antigen immunization and viral infections. However, the contribution of CD19 in the context of CNS infections has not been evaluated. This study demonstrates that antiviral protective ASC in the CNS are dependent on CD19 activation and peripheral GC formation, while accumulation of early-recruited IgD+ B cells is CD19 independent. This indicates that IgD+ B cells commonly found early in the CNS do not give rise to local ASC differentiation and that only antigen-primed, peripheral GC-derived ASC infiltrate the CNS, thereby limiting potentially harmful nonspecific Ab secretion. Expanding our understanding of activation signals driving CNS migration of distinct B cell subsets during neuroinflammatory insults is critical for preventing and managing acute encephalitic infections, as well as preempting reactivation of persistent viruses during immune-suppressive therapies targeting B cells in multiple sclerosis (MS), such as rituximab and ocrelizumab.


Sign in / Sign up

Export Citation Format

Share Document