scholarly journals Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis

2004 ◽  
Vol 101 (30) ◽  
pp. 11064-11069 ◽  
Author(s):  
A. Corcione ◽  
S. Casazza ◽  
E. Ferretti ◽  
D. Giunti ◽  
E. Zappia ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6334
Author(s):  
Manuel Montesinos-Rongen ◽  
Anna Brunn ◽  
Monica Sanchez-Ruiz ◽  
Ralf Küppers ◽  
Reiner Siebert ◽  
...  

Primary lymphoma of the central nervous system (PCNSL, CNS) is a specific diffuse large B cell lymphoma (DLBCL) entity confined to the CNS. Key to its pathogenesis is a failure of B cell differentiation and a lack of appropriate control at differentiation stages before entrance and within the germinal center (GC). Self-/polyreactive B cells rescued from apoptosis by MYD88 and/or CD79B mutations accumulate a high load of somatic mutations in their rearranged immunoglobulin (IG) genes, with ongoing somatic hypermutation (SHM). Furthermore, the targeting of oncogenes by aberrant SHM (e.g., PIM1, PAX5, RHOH, MYC, BTG2, KLHL14, SUSD2), translocations of the IG and BCL6 genes, and genomic instability (e.g., gains of 18q21; losses of 9p21, 8q12, 6q21) occur in these cells in the course of their malignant transformation. Activated Toll-like receptor, B cell receptor (BCR), and NF-κB signaling pathways foster lymphoma cell proliferation. Hence, tumor cells are arrested in a late B cell differentiation stage, corresponding to late GC exit B cells, which are genetically related to IgM+ memory cells. Paradoxically, the GC reaction increases self-/polyreactivity, yielding increased tumor BCR reactivity for multiple CNS proteins, which likely contributes to CNS tropism of the lymphoma. The loss of MHC class I antigen expression supports tumor cell immune escape. Thus, specific and unique interactions of the tumor cells with resident CNS cells determine the hallmarks of PCNSL.


2020 ◽  
Vol 117 (35) ◽  
pp. 21512-21518 ◽  
Author(s):  
Stefanie Kuerten ◽  
Tobias V. Lanz ◽  
Nithya Lingampalli ◽  
Lauren J. Lahey ◽  
Christoph Kleinschnitz ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.


2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


PEDIATRICS ◽  
1958 ◽  
Vol 21 (5) ◽  
pp. 703-709
Author(s):  
John C. Gall ◽  
Alvin B. Hayles ◽  
Robert G. Siekert ◽  
Haddow M. Keith

Forty cases of disease of the central nervous system, characterized by several episodes and disseminated lesions, with onset in childhood and clinically typical of multiple sclerosis, were studied. The disease as it occurs in children does not appear to differ clinically from the disease as observed in adults, in respect to mode of onset, symptoms, physical findings, and changes in the spinal fluid. In the Mayo Clinic series, however, almost twice as many girls as boys were affected. A pediatrician confronted with a child showing evidence of scattered neurologic deficits that remit, particularly a disturbance of vision and co-ordination, should consider the possibility of multiple sclerosis.


Sign in / Sign up

Export Citation Format

Share Document