In‐Flight Far‐Field Measurement of Helicopter Impulsive Noise

1976 ◽  
Vol 21 (4) ◽  
pp. 2-16
Author(s):  
F. H. Schmitz ◽  
D. A. Boxwell

A new and highly successful method of collecting far‐field acoustic data radiated by helicopters in forward flight has been developed, utilizing a quiet aircraft flying in formation ahead of the subject helicopter. The lead aircraft, flown as an acoustic probe, was equipped with tape‐recording equipment and an external microphone. Spatial orientation of the helicopter with respect to the monitoring aircraft was achieved through visual flight reference. Far‐field acoustic data defining the impulsive noise radiation characteristics of the UH‐1H helicopter during high‐speed flight and partial ‐power descents have been gathered with this technique. Three distinct types of impulsive waveforms have been identified and correlated with helicopter steady operating conditions.

Author(s):  
Sanford M. Dash

Recent activities at CRAFT Tech related to the simulation of high speed laboratory jets, their control via passive actuation, and the scale-up and revisions required for real engines and operation at flight are discussed. We focus on aircraft applications related to jet noise reduction with activities pertinent to varied missile jet/plume applications the subject of other review papers. Laboratory jet experiments have served to validate the RANS turbulence models utilized and are supplemented by LES studies to provide data sets not readily obtainable in the laboratory such as temperature fluctuation data needed for thermal transport modeling. Applications for a military fighter aircraft indicate that laboratory experiments cannot replicate the real exhaust environment and thus can only suggest actuation concepts that are promising. CFD is required to revise and scale-up these concepts for the real engine and to provide estimates of their performance in flight. Studies presented show the differences between laboratory plumes and real plumes, as well as the effects of plume/plume and plume/aerodynamic interactions which are quite appreciable and show a markedly different structure than that of the isolated jet under the same operating conditions.


1996 ◽  
Vol 04 (03) ◽  
pp. 321-339 ◽  
Author(s):  
ROGER C. STRAWN ◽  
RUPAK BISWAS ◽  
ANASTASIOS S. LYRINTZIS

This paper presents two methods for predicting the noise from helicopter rotors in forward flight. Aerodynamic and acoustic solutions in the near field are computed with a finite-difference solver for the Euler equations. Two different Kirchhoff acoustics methods are then used to propagate the acoustic signals to the far field in a computationally-efficient manner. One of the methods uses a Kirchhoff surface that rotates with the rotor blades. The other uses a nonrotating Kirchhoff surface. Results from both methods are compared to experimental data for both high-speed impulsive noise and blade-vortex interaction noise. Agreement between experimental data and computational results is excellent for both cases. The rotating and nonrotating Kirchhoff methods are also compared for accuracy and efficiency. Both offer high accuracy with reasonable computer resource requirements. The Kirchhoff integrations efficiently extend the near-field finite-difference results to predict the far field helicopter noise.


2020 ◽  
Vol 148 (4) ◽  
pp. 2702-2702
Author(s):  
Michael S. Bassett ◽  
Reese D. Rasband ◽  
Daniel J. Novakovich ◽  
Kent L. Gee ◽  
Steven C. Campbell ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Oihane Fernandez-Betelu ◽  
Isla M. Graham ◽  
Kate L. Brookes ◽  
Barbara J. Cheney ◽  
Tim R. Barton ◽  
...  

Increasing levels of anthropogenic underwater noise have caused concern over their potential impacts on marine life. Offshore renewable energy developments and seismic exploration can produce impulsive noise which is especially hazardous for marine mammals because it can induce auditory damage at shorter distances and behavioral disturbance at longer distances. However, far-field effects of impulsive noise remain poorly understood, causing a high level of uncertainty when predicting the impacts of offshore energy developments on marine mammal populations. Here we used a 10-year dataset on the occurrence of coastal bottlenose dolphins over the period 2009–2019 to investigate far-field effects of impulsive noise from offshore activities undertaken in three different years. Activities included a 2D seismic survey and the pile installation at two offshore wind farms, 20–75 km from coastal waters known to be frequented by dolphins. We collected passive acoustic data in key coastal areas and used a Before-After Control-Impact design to investigate variation in dolphin detections in areas exposed to different levels of impulsive noise from these offshore activities. We compared dolphin detections at two temporal scales, comparing years and days with and without impulsive noise. Passive acoustic data confirmed that dolphins continued to use the impact area throughout each offshore activity period, but also provided evidence of short-term behavioral responses in this area. Unexpectedly, and only at the smallest temporal scale, a consistent increase in dolphin detections was observed at the impact sites during activities generating impulsive noise. We suggest that this increase in dolphin detections could be explained by changes in vocalization behavior. Marine mammal protection policies focus on the near-field effects of impulsive noise; however, our results emphasize the importance of investigating the far-field effects of anthropogenic disturbances to better understand the impacts of human activities on marine mammal populations.


2021 ◽  
Vol 13 (3) ◽  
pp. 1505
Author(s):  
Ignacio Menéndez Pidal ◽  
Jose Antonio Mancebo Piqueras ◽  
Eugenio Sanz Pérez ◽  
Clemente Sáenz Sanz

Many of the large number of underground works constructed or under construction in recent years are in unfavorable terrains facing unusual situations and construction conditions. This is the case of the subject under study in this paper: a tunnel excavated in evaporitic rocks that experienced significant karstification problems very quickly over time. As a result of this situation, the causes that may underlie this rapid karstification are investigated and a novel methodology is presented in civil engineering where the use of saturation indices for the different mineral specimens present has been crucial. The drainage of the rock massif of El Regajal (Madrid-Toledo, Spain, in the Madrid-Valencia high-speed train line) was studied and permitted the in-situ study of the hydrogeochemical evolution of water flow in the Miocene evaporitic materials of the Tajo Basin as a full-scale testing laboratory, that are conforms as a whole, a single aquifer. The work provides a novel methodology based on the calculation of activities through the hydrogeochemical study of water samples in different piezometers, estimating the saturation index of different saline materials and the dissolution capacity of the brine, which is surprisingly very high despite the high electrical conductivity. The circulating brine appears unsaturated with respect to thenardite, mirabilite, epsomite, glauberite, and halite. The alteration of the underground flow and the consequent renewal of the water of the aquifer by the infiltration water of rain and irrigation is the cause of the hydrogeochemical imbalance and the modification of the characteristics of the massif. These modifications include very important loss of material by dissolution, altering the resistance of the terrain and the increase of the porosity. Simultaneously, different expansive and recrystallization processes that decrease the porosity of the massif were identified in the present work. The hydrogeochemical study allows the evolution of these phenomena to be followed over time, and this, in turn, may facilitate the implementation of preventive works in civil engineering.


Sign in / Sign up

Export Citation Format

Share Document