A Quasilinear Analysis and Design Technique for Nonlinear Flight Control Systems

1990 ◽  
Vol 35 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Charles Dabundo ◽  
H. C. Curtiss

Nonlinear characteristics which are likely to be present in rotorcraft flight control systems include saturation, deadzone, and hysteresis. These occur due to the physical nature of the flight hardware or may be intentionally designed into the system to enhance safety or performance. A technique to include such nonlinear behavior in the analysis and design of flight control systems is presented and illustrated by examples. This technique, called the Quasilinear System Analysis and Design (QSAD) Method is based on describing function theory and can be applied to systems of fairly general structure. The method promotes physical insight into the effects of nonlinearities, and provides a quantitative approach to the consideration of nonlinear effects in control system design. The QSAD method provides a means to design a more robust control system in the presence of nonlinearities.

Author(s):  
D. SUBBARAM NAIDU

1965 ◽  
Vol 180 (1) ◽  
pp. 246-259
Author(s):  
R. Ruggles

The author discusses some of the problems of failure-survival automatic flight control systems and suggests some basic ground rules as design criteria. The advantages and disadvantages of some of the main types of system are discussed: duplex, triplex, triple component, duplicate-monitored and quadruplex systems being covered. In particular, a quadruplex actuator is described which has been designed and developed mainly for automatic flight control system applications where a very high degrees of failure-survival capability is required. A detailed failure analysis of the various systems is carried out and the importance of the electrical and hydraulic supply system configurations and failure rates is brought out.


1997 ◽  
Vol 119 (3) ◽  
pp. 478-485 ◽  
Author(s):  
M. Goldfarb ◽  
N. Celanovic

A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for control applications requiring accurate position tracking performance. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of nonintuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. Bond graph terminology is incorporated to facilitate the energy-based formulation of the actuator model. The authors propose a new bond graph element, the generalized Maxwell resistive capacitor, as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.


Author(s):  
Fu Dongmei

In engineering application, the characteristics of the control system are entirely determined by the system controller once the controlled object has been chosen. Improving the traditional controller or constructing the new controller is an unfading study field of control theory and application. The control system is greatly enriched and developed by this way. As a complicated self-adaptable system, the biological immune system can effectively and smoothly stand against antigens and viruses intruded into organism. It is possible to improve the self-learning, adaptive and robustness capability of the control system through embedded an artificial immune controller in control system. Based on the biological immune mechanism and artificial immune model, this chapter attempts to study the immune controller design and application in traditional control system..First, a kind of artificial immune controller is proposed based on the T-B cells immunity. The boundedness and the stability of SISO control systems, which constructed by the artificial immune controller, are proved by the little gain theorem. A general controller structure frame based on the T-B cells immunity is proposed, which includes the same kind of controller proposed previously. The validity of this artificial immune controller is verified by simulation. Second, a new type of artificial immune controllers is constructed according to a simple double-cell immune dynamics model. The non-error characteristic of SISO control systems, which constructed by the artificial immune controller, is proved by the nonlinear theory in this chapter. The I/O stability and no-error characteristic of the system are verified by simulations, which show that the kind of artificial immune system have good anti-lag capability. Third, the Varela immune network model has been improved based on which an artificial immune system is proposed. The odd linearization method of the non-linear system is used to prove the stability and non-error characteristic of the SISO system constructed by the artificial immune control system. Its I/O stability, non-error characteristic and strong anti-lag capability are also verified by simulation. Finally, based on the comparison of the three kinds of immune controllers, a general structure of the artificial immune controller is proposed. The further study on this field is indicated in this chapter lastly.


Sign in / Sign up

Export Citation Format

Share Document