A Numerical Study of Sand Separation Applicable to Engine Inlet Particle Separator Systems

2009 ◽  
Vol 54 (4) ◽  
pp. 042001 ◽  
Author(s):  
M. E. Taslim ◽  
A. Khanicheh ◽  
S. Spring
Author(s):  
A. Ghenaiet ◽  
S. C. Tan

Helicopters operating in a desert region are often subjected to the environmental effects of sand ingestion that can erode gas turbine engines and block the cooling passages. Traditional method of removing sand particles include barrier filters that employed vortex tube and impact filter designs, and inertial particle separator (IPS). Barrier filters are normally quite heavy and require constant servicing or replacement. IPS relies on contoured surfaces to direct particulates to a scavenge area through the actions of the viscous forces and bounce characteristics of the sand particles. The geometrical design of an IPS plays an important role in determining the sand separation efficiency. This paper presents a numerical study of the RTM322 IPS, which includes the effects of changing the hub, splitter and scavenge duct geometries on the sand separation efficiency. The flow field calculation in the IPS was performed with the commercial CFD software package called TASCflow. The particle trajectories were computed using an in-house developed trajectory code, which was based on the lagrangian method. The effects of flow turbulence on the trajectory were simulated using the eddy lifetime concept. Several design geometrical modifications were investigated such as the shape of the hub and splitter and their relative locations. Particle trajectories and separation efficiency were performed for a range of sand particle sizes, inlet mass flow rates and scavenge ratios.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document