Thematic Background Study - Incorporating genetic diversity and indicators into statistics and monitoring of farmed aquatic species and their wild relatives

2021 ◽  
Author(s):  
Ghazal Ghobadi ◽  
Alireza Etminan ◽  
Ali Mehras Mehrabi ◽  
Lia Shooshtari

Abstract Background Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box–derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Results Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei’s gene diversity (He), and Shannon’s information index (I) were estimated for Ae. cylindrica species. Conclusion The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.


BMC Genetics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 52 ◽  
Author(s):  
Carla Lambertini ◽  
Tenna Riis ◽  
Birgit Olesen ◽  
John S Clayton ◽  
Brian K Sorrell ◽  
...  

Author(s):  
Michael Way ◽  

The genetic diversity found in populations of crop wild relatives is an essential resource for future crop breeding, but populations are at risk of loss before germplasm has been fully conserved in genebanks. This chapter describes best practice for targeting and identifying species, and review knowledge about the variation in wild plant populations to guide the timing of collecting and approaches for genetic sampling. Indicators are presented for seed quality, ripeness and dispersal. Techniques for collection of seed, herbarium vouchers and associated data are reviewed with examples drawn from the Adapting Agriculture to Climate Change (Crop Wild Relative) project. Further research is needed to find optimal approaches for handling of seed to ensure high longevity of seed collections, and improved tools are needed to guide sampling of genetic diversity of crop wild relatives.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1446
Author(s):  
Lorraine Rodriguez-Bonilla ◽  
Karen A. Williams ◽  
Fabian Rodríguez Bonilla ◽  
Daniel Matusinec ◽  
Andrew Maule ◽  
...  

Knowledge of the genetic diversity in populations of crop wild relatives (CWR) can inform effective strategies for their conservation and facilitate utilization to solve agricultural challenges. Two crop wild relatives of the cultivated cranberry are widely distributed in the US. We studied 21 populations of Vaccinium macrocarpon Aiton and 24 populations of Vaccinium oxycoccos L. across much of their native ranges in the US using 32 simple sequence repeat (SSR) markers. We observed high levels of heterozygosity for both species across populations with private alleles ranging from 0 to 26. For V. macrocarpon, we found a total of 613 alleles and high levels of heterozygosity (HO = 0.99, HT = 0.75). We also observed high numbers of alleles (881) and levels of heterozygosity (HO = 0.71, HT = 0.80) in V. oxycoccos (4x). Our genetic analyses confirmed the field identification of a native population of V. macrocarpon on the Okanogan-Wenatchee National Forest in the state of Washington, far outside the previously reported range for the species. Our results will help to inform efforts of the United States Department of Agriculture Agricultural Research Service (USDA-ARS) and the United States Forest Service (USFS) to conserve the most diverse and unique wild cranberry populations through ex situ preservation of germplasm and in situ conservation in designated sites on National Forests.


2012 ◽  
Vol 41 (Special Issue) ◽  
pp. 103-107
Author(s):  
K. Sato ◽  
H. Tsujimoto ◽  
Von Bothmer R

see the full text


Sign in / Sign up

Export Citation Format

Share Document